
AD-A260 312

T E C- 0 0 21 I II !II IIi 11 111 IlI

'II./

An Image Understanding Eiennr

Environment for DARPA
Supported Research and
Applications,
Second Annual Report

Douglas Morgan
Advanced Decision Systems
1500 Plymouth Street
Mountain View, CA 94043-1230

Daryl Lawton

Georgia Institute of Technology
225 North Avenue, NW
Atlanta, GA 30332-0320 1 2v oC

93-02558
Approved for public release; distribution is unlimited.

Prepared for:

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209-2308
Monitored by:

U.S. Army Corps of Engineers
Topographic Engineering Center
Fort Belvoir, Virginia 22060-5546

,I),

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

The citation in this report of trade names of commercially available products does not
constitute official endorsement or approval of the use of such products.

REPORT Form Approved
DOCUMENTATION PAGE OMB No. 0704-0188

vuwlic ft"o INq burden fOr this coaiecrtlo of intO•rmaton %I e•tlnatedo to eae ,q@ hour f bt'¶Orl4. e nciucing the tithe for re•i•wing InftfuWLbron. sealching einltunq data wuwcz.
gatheflrl and ma.nta.nunq . h data needed, an ' cOminlie and reviewing the collection of information Send comments regarding this burden estimate or any Othetr *se of this
cotlenton of informatiOn. includng lg4eltion r fO, reducing this burden. to Washingqton 1eaduarters Services. Oirectorate fo information oirEations and Aeorts. 12 IS Jefetrno
Oavi% Highway. Suite 1204. Arlington. VA 22202.-430. and to the Office of MIanaqemet and Budget. Paoerworm Reduction FiI roject (0704-018). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE J3. REPORT TYPE AND DATES COVERED
May 1992 Technical Report Sep. 1990 - Sep. 1991

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

An Image Understanding Environment for DARPA Supported Research DACA76-89-C-0023
and Applications, Second Annual Report

6. AUTHOR(S)

Douglas Morgan' Daryl Lawton'

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATIONREPORT NUMBER
'Advanced Decision Systems, 1500 Plymouth Street,
Mountain View, CA 94043-1230

2Georgia Institute of Technology, Atlanta, GA 30332-0320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
Defense Advanced Research Projects Agency (DARPA) AGENCY REPORT NUMBER

1400 Wilson Blvd., Arlington VA 22209-1155

U.S. Army Topographic Engineering Center TEC-0021
Fort Belvoir, VA 22060-5546

11. SUPPLEMENTARY NOTES

Effective 1 October 1991, the U.S. Army Engineer Topographic Laboratories (ETL) became the
U.S. Army Topographic Engineering Center (TEC).

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report on Image Understanding Environment (IUE) describes the design of the base classes, the structure
of the class hierarchy and the user interface. The design benefits the IUE by allowing integration of the diverse
concepts of IU within one environment, rapid introduction of new users to the IUE, and an organized extension
of the base IUE developers (including new users).

14. SUBJECT TERMS 15. NUMBER OF PAGES
94

Vision environment, Image Understanding (IU), Computer Vision (CV), object 16. PRICE CODE

oriented programming, C + +

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

Prescribed by ANSI St Z3W lS
?96-102

Accesion For

NTIS CRA&I
DTIC TABUnannounced 0

Justification

Dsbin QUALM..................

Availability Codes

CONTENTS Dist Avpecialridor

1. INTRODUCTION 1

2. Background and Design Principles 3

3. Object Abstraction 6

3.1 Overview ... 6

3.1.1 Object and Class 7

3.1.2 Math, Physics, and Information Processing Classes 8

3.1.3 Development Guidelines 8

3.2 Classes and Conventions 9

3.2.1 Vocabulary 10

3.2.2 Common Capabilities 10

3.2.3 Code Generation 10

3.2.4 Naming Conventions 12

3.2.5 Hierarchy 13

3.2.6 Collection Class 13

3.2.7 Network Classes 14

3.2.8 Abstract Classes 14

3.2.9 Views 14

3.3 Hierarchy Class Definitions 15

3.3.1 Object 15

3.3.2 Class 15

3.3.3 Collection 21

3.3.4 Bag 23

3.3.5 Set 23

3.3.6 PointSet 24

iii

3.3.7 PointSpace 24

3.3.8 Relation 25

3.3.9 Function 25

3.3.10 Tuple 25

3.3.11 RealFunction 27

3.3.12 Array 27

3.3.13 Image 27

3.3.14 DiHypergraph 27

3.3.15 BayesNet 27

3.3.16 Hyperarc. 28

3.3.17 BayesArc 28

3.3.18 Attribute 28

3.3.19 Unit 28

3.3.20 Dimension 28

4. User Interface .. 29

4.1 Introduction 29

4.1.1 Paradigms 31

4.2 Required Functionality 31

4.3 IUE Interface Objects 36

4.3.1 Object Display and Browsers 36

4.3.2 Simplified access to GUI objects 39

4.3.3 Support Objects 39

4.3.4 Interface to Arbitrary Interface Devices 40

4.3.5 Total Synergy between IUE object methods and the
IUE Interface Operations 41

4.4 Object Display 41

4.4.1 Appearance 41

4.4.2 Attributes and Methods 46

4.4.3 Local Graphic Displays (vector, edges) 52

4.4.4 Surfaces 5,4

4.4.5 Coordinate Transform Network of Images 54

4.5 Plotting Displays 55

iv

4.6 Field Browsers 55
4.7 Object-Registered Browser 56

4.8 Database/Set Browser 59

4.9 Object Browser 61

4.10 Hierarchical Browser 61

4.11 Graph Browsers 61

4.12 GUI Object Access 61

4.13 Associated Objects 61

4.14 Interface Context 65

4.15 Interface Command Language 65

4.15.1 Command Syntax 66

4.15.2 Window Creation 66

4.15.3 Browser Creation 66

4.15.4 Animation Commands 66

4.15.5 Window Linking 66

4.15.6 Object Position Mapping Keywords 68

4.15.7 Graphics 68

4.15.8 Object Value Mapping Keywords 69

4.15.9 Interface Command Language Abbreviations 71

4.15.10 Interface Context and Intelligent Defaulting 72

4.15.11 Organization of System Menus 72

4.16 Implementation of Nice Features/Examples 72

4.16.1 Displaying an Image 72

4.16.2 Interactive Function Application 74

4.16.3 Displaying a set of Region Boundaries and Junctions 77

4.16.4 Display of a Vector Field 79

4.16.5 Window to window Zooming and Panning 79

4.16.6 Browsing a selected Image Area 79

4.16.7 Displaying a Color Image 81

4.16.8 Multiple Image Display 81

4.16.9 Interactive Inspection of Image Registered Features. 81

V

4.16.10 Finding a particular result and Displaying it 81

4.16.11 Animation of Surface Display of a moving edge. ... 82

4.16.12 Interactive Surface Display 83

4.16.13 Process Monitoring 84

4.16.14 Constraint Network Monitoring 84

4.16.15 Interactive Histogram Segmentation 84

5. Summary 85

vi

LIST OF FIGURES

3-1 Object Hierarchy Outline 7

4-1 Levels of Interface Implementation 30

4-2 IUEUI Object Hierarchy 37

4-3 Object Display Window 42

4-4 Display Tool Box 45

4-5 Object Registered Browser 58

4-6 Set/Database Browser 60

4-7 Object Browser 62

4-8 Hierarchical Browser 63

4-9 Graph Browser 64

4-10 System Menu Layout 73

vii

LIST OF TABLES

3-1 Vocabulary Choices for Object-Oriented Programming Concepts.. 11

3-2 Object Method Signatures 16
3-3 Object Methods Definitions 17
3-3 Object Methods Definitions (cont'd) 18
3-3 Object Methods Definitions (cont'd) 19

3-4 Method Signatures 19
3-5 Method Definitions 20

3-6 Collection Method Signatures 22
3-7 Additional Relation Method Signatures 25

3-8 Additional Function Method Signatures 26

viii

PREFACE

This research is sponsored by the Defense Advanced Research Projects Agency (DARPA),
1400 Wilson Boulevard, Arlington, Virginia 22209-2308 and monitored by the U.S. Army
Topographic Engineering Center (TEC), Fort Belvoir, Virginia 22060-5546, under Contract
DACA76-89-C-0023, by the Advanced Decision Systems, 1500 Plymouth Street, Mountain View,
California 94043-1230, and Georgia Institute of Technology, 225 North Avenue, NW, Atlanta,
Georgia 30332-0320. The Contracting Officer's Representative was Mr. George Lukes. The
DARPA Program Managers were Dr. Rand Waltzman and Mr. Oscar Firschein.

ix

Section 1

INTRODUCTION

This is the annual technical report on work performed by the Advanced Decision
Systems (ADS) Division or Booz-Allen & Hamilton (BAH) on the "An Image Un-
derstanding Environment for DARPA Supported Research and Applications" project
DACA76-89-C-0023 during the period of September 26, 1990 to September 25, 1991.

The focus of activity during this period has been helping to design the DARPA
sponsored Image Understanding Environment (IUE). ADS and both its subcontrac-
tors, Georgia Institute of Technology (GT) and Stanford University, are participating
in this DARPA Image Understanding (IU) community design effort. The principal
design participants have been Mr. Douglas Morgan (ADS), Dr. Tod Levitt (ADS,
through September 1991), Dr. Daryl Lawton (GT), and Dr. Thomas Binford (Stan-
ford).

The IUE will significantly advance the state of the art in environments and de-
velopment frameworks. Central to this advancement is the capability to seamlessly
integrate the numerous concepts of ITT into one system, to easily introduce new users
to the system, and to extend the system in multiple new directions. Our work has
focused on providing these capabilities with a class hierarchy clearly embodying IU
concepts and a user interface allowing complex interactions to be simply expressed.

During previous reporting periods, the ADS/GT team designed a Vision Environ-
ment system and developed a prototype for a Sun workstation in C++. Plans were
made for significant improvements to the ADS Vision Environment system prototype.
However, the current reporting period began with a large cut in contract funding, leav-
ing only enough support for scaled back design activities. At that time it was clear
that further design activities would achieve the greatest impact if oriented toward in-
fluencing the emerging DARPA IUE design. Transitioning the Vision Environments
design to the IUE and then continuing to refine the design would lead to the tangible
result of a better IUE system end product. Like the Vision Environment system, the
DARPA IUE is intended to facilitate the transfer of technology from the DARPA IU
community into industrial, military, and commercial applications.

The IUE design is primarily being designed by a group of ten DARPA IU community
representatives from industry and academia. The design group consists of:

Joe Mundy (Chair) - GE
Thomas Binford - Stanford
Terry Boult - Columbia
Al Hanson - U Mass
Bob Haralick - U of Washington
Charlie Kohl - AAI
Daryl Lawton - Georgia Tech
Douglas Morgan - ADS
Keith Price - USC
Tom Strat - SRI.

The design efforts by ADS, GT, and Stanford representatives have been funded largely
through this contract. Prior to the formation of the design group, several meetings
(open to the DARPA IU community) were held to refine the IUE goals and devel-
opment strategy. During this period, Tod Levitt was instrumental in transitioning
the Vision Environments design and design concepts into the IUE and in shaping
the direction of the IUE design to initially focus on specification of a comprehensive
class hierarchy. Presentations were also given by Tod Levitt and Daryl Lawton at
the 1990 IU Workshop. One presentation reviewed the Vision Environments design
and prototype development. The other described the functionality that a modern
IUE should provide. Rand Waltzman and Oscar Firschein have been the DARPA
program managers for the IUE effort.

This document describes the inputs of ADS team to the IUE design. These inputs
were primarily in the definition of portions of a class hierarchy for the IUE. ADS
was primarily responsible for Object Abstraction (the root classes of the hierarchy).
GT was responsible for User Interfaces. Stanford provided support for both areas
and additional inputs for Image Features. ADS also has acted as a liaison between
the IUE design committee and the DARPA Open Object-Oriented Database project
being carried out by Tc_ ,as Instruments. All three organizations, with GT taking the
lead, have helped refine the initial concepts for general spatial objects.

This document contains four sections. Section 2 provides background for the design
goals and choices of the last two sections. Section 3 describes the Object Abstraction
inputs to the IUE design. Section 4 describes the User Interface inputs.

Section 2

Background and Design Principles

The inputs of the ADS team to the IUE design are based on extensive experience in
applying object-oriented techniques to IU. This chapter briefly describes some of the
systems with which we gained this experience and presents several high-level design
principles we have found to be critical to success.

The ADS inputs to the IUE design are based on experience in developing several
generations of Object-Oriented class hierarchies and systems for Image Understanding
(IU). These systems include:

0 Vision Environments. This system was designed and prototyped during the
first year of this contract. It was aimed at achieving high portability and cost
effectiveness through use of C++ and off-the-shelf class libraries and tools. The
design contained a early versions of spatial objects. The prototype integrated
the Interviews class library with image handling, image display, and relational
database access.

* Sensor Algorithm Research Expert System (SARES) Testbed-CLOS
Version. This system has been under development with Wright Laboratories
and DARPA since 1986. It integrates 3D objects, imagery, feature extraction,
interpretation networks, Bayesian Networks, stochastic coordinate transforma-
tions, a multiple hypothesis (multiple worlds) mechanism, rule-based control,
user interface (with image display, rendering, graphic overlay, network display,
tables, and plots). This system addresses requirements, spanning: IU, environ-
ments, physical modeling, sensors, estimation, detection, classification, infer-
ence, user interfaces, and information management. Beginning about two years
ago, ADS began a major reorganization of the Testbed to unify the approach of
providing this wide range of capabilities. Since then, we have made major revi-
sions to the testbed to make it reflect a more integrated view. The experience
gained here has been a significant factor in the ADS inputs to the IUE design.

3

4

" Sensor Algorithm Research Expert System (SARES) Testbed- C++
Version. An effort is currently underway to convert a portion of the CLOS

SARES Testbed to C++.

"* View. View, initially created in 1988, is an extensible class hierarchy (with

efficient iteration macro environments, or "IU constructs") for image and image
feature objects. It is an outgrowth of Powervision (see below), made with the
goals of porting Powervision from ZetaLisp to CommonLISP and of separating
the IU processing aspects of Powervision from the interactive user environment
aspects. It supplies constructs for efficient iteration over all its spatial objects
(images, edges, edges-lists, regions, etc.). Having been used on more than ten
ADS projects, including SARES, View has influenced our contributions to image
designs and efficiency considerations.

" Powervision. Developed and extended by Daryl Lawton while at ADS, Pow-
ervision is one of the first object-oriented IU environments. It is written in
ZetaLisp/Flavors for the Symbolics Lisp Machine. A distinctive feature of this
system is the extensive use of databases for library functions, processing results,
and processing history.

"* ADS IUlab. This is a system of abstract data types (ADTs) in C for types such
as Image, Region, ConnectedComponent, ContainmentTree, and Table. This
1985 system implements strict ADTs in C, documenting the few nonfunctional
(side-effect or procedural) access paths to object internals. It supports all C
primitive numerical types (e.g. unsigned short and double) with typing macros.
It supports different boundary handling techniques: reflection, constant value,
and border value. To address memory constraints of early VAX systems, an Im-
age can be read/created in any of three modes for disk buffering: all in-memory,
read rows from disk on demand (with iterators making transparent access to
disk), and read rows from disk on demand with back-up to a temporary disk
file. This system also influenced our contributions on efficiency considerations.

With each system experience was gained in development, performance, training,
portability and maintenance. Our proposals for the IUE design have been aimed at
using the design principles distilled from these developments to arrive at a widely
useful IUE. The issues in class hierarchy design that we considered include:

e Aggregating names for similar concepts. To ease training and mainte-
nance, a system should consistently name implementations of similar concepts.
An example from CommonLISP where naming is not consistent is the set of
access functions for the various attribute/value data structures. These access
functions include: aref, assoc, elt, get, getf, gethash, nth, nthcdr, rassoc, and
slot-value. Although these all do the same conceptual operation (evaluate an

5

index/value association), there are functions with ten different names and the
order of arguments changes unpredictably between functions. Without con-
scious steps to aggregate names, the IUE could easily generate many dozens of
more names for the same operation. A tightly knit class hierarchy is an excellent
way to encourage consistent naming in the IUE.

* Specifying precise semantics. To make it possible to do up-front design and
to write comprehensive test suites, the class documentation needs to precisely
define the over-time and between-object behaviors of objects. It is especially
important to document what to expect for identity, creation, destruction, copy-
ing, assignment, equality, persistence, and mutation of objects. Consistency
of these aspects of object behavior will greatly affect the ability to integrate
contributions from a distributed set of developers.

e Taking a set- and relation-theoretic approach. We find that sets, relations
(tuple sets), functions (functional relations), and networks (sets of relations)
are fundamental to many aspects of the SARES Testbed and our other IU
environments. These aspects include:

"o Databases (set of relations)

"o Bayesian Networks (set of conditional probability relations)

"o User interface (sets of object-display-action relations)

"o Coordinate system networks (sets of coordinate transform functions)

"o 3D models (sets of attachment relations)

"o 3D primitives (sets of points)

By capturing this commonality in a single set-theoretic class hierarchy, names
for concepts are tightly aggregated and much of the system's semantics can be
specified for just one class and reused many times without change. A single
narrow-rooted class hierarchy also allows the objects of a strongly typed lan-
guage (such as C++) to participate in a wide range of activities defined along
the trunk of abstract set-theoretic classes.

Although we had earlier recommended that C++ be the sole delivery language for
the Vision Environment system, for the IUE a mix of CommonLISP and C++ is
a requirement. CommonLISP adds the significant advantages of automatic garbage
collection, dynamic compilation, dynamic loading, interpreted operation, and exten-
sive support for multiple inheritance. These factors, in addition to the reliance of
many DARPA IU contractors on CommonLISP, will help with timely construction of
robust software for complex IU applications.

Section 3

Object Abstraction

This chapter presents the Object Abstraction inputs to the IUE design. These
inputs have been incorporated into-the IUE design document produced by the IUE
design committee and into the lUE Overview paper presented at the 1992 DARPA
IU Workshop.

3.1 Overview

Object Abstraction for the IUE lays out the trunk of the class hierarchy and pro-
poses software development guidelines. Its aim is to smooth the way for independently
developed lUE components to work together. The IUE class hierarchy is organized
around a single root class (Object), a metaclass (Class), and a core set of classi-
cal mathematics, physics, and information processing related classes. Guidelines for
extending the class hierarchy are also included.

The IUE will be a large and extensible system jointly developed at numerous sites
throughout the country. Bringing order to the IUE build will require one specific class
hierarchy and one specific set of design principles. This will provide coordination well
beyond the generic practice of "object-oriented programming" or "00 design". The
hierarchy and design principles of the IUE must support the built-in IUE capabilities
and accommodate new additions. A good foundation will keep the overall costs of
building the IUE down and will improve chances for a successful, robust system.

Object Abstraction aims to help developers provide consistent capabilities and
names for classes and methods. It also aims to ensure that capabilities are comprehen-
sive and logically arranged with well-defined paths to obtaining maximal efficiency.
The overall effect is to allow each new development to be added to the class hierarchy
at the logically correct point (rather than, for example, making a new incompatible
class hierarchy or work with none at all).

Object Abstraction is essentially one Object class, one Class class, a Collection class
hierarchy, and design/programming guidelines for the IUE build. These foundation

6

7

UlJ0 ýlsý Collection Attribute Sensor ImageFeature

Sequence Bag Dimension EgI PassiveEnergySensor
ImageSeq EdgeSeq Set ...

SpatialObject Relation Graph

Point
Curve Function CartesianProduct oordinateNet

Task Fni I onstraintNet
Surfaceod~ac

Surface Tuple Array . .CoordSpace .asKurapn
Volume CoordTransform T
Space LinearOperator ma BayesianNet

aI RelationalDatabase.. Matrix Image •

Simplelmage Compositelmage Pyramidlmage

Figure 3-1: Object Hierarchy Outline.

classes define an extensive set of methods for interacting with environment-level tools,
for tailoring specialized classes via parametric hooks, and for consistently accessing
common mathematics and physics operations. Figure 3.1 outlines the class hierarchy.
The figure is an outline of abstract classes: the IUE will have more classes to provide
various implementations of the classes shown in the figure. Also, aspects such as
name choice, specific inheritance paths, and the use of multiple inheritance are being
further refined.

3.1.1 Object and Class

Together, Object and Class define the environment-level behavior shared by all
objects. All WUE classes inherit from Object and are associated with a unique instance
of the class Class. These classes allow the environment to examine instances and
configure operations (especially I/O, copy, and display/editing) based on different
types and classes. This two-class approach is closely aligned with systems such as
CLOS, Smalltalk, and the National Institute of Health C++ Class Library. Applying
the approach to C++ requires substantial infrastructure and discipline, but will be
valuable in organizing the IUE and providing powerful interactive capabilities.

3.1.2 Math, Physics, and Information Processing Classes

The math, physics, and information processing classes represent such fundamental
concepts as images, extracted features, world objects, pure geometry, transformations
(including coordinate systems), sensors, sets, sequences, relations, and networks of
relations. The Collection class is basic to much of the class hierarchy.

Collection is parameterized with functions (including equivalence, insert compati-
bility, and union compatibility) so that it can cleanly specialize in multiple directions:

* Finite, countably infinite, and uncountable (at least conceptually so) numbers
of elements

* Object-valued or language-primitive-valued (e.g., int) element types
* Constraints on types or values of elements to be inserted.

Early versions of the WUE design had nearly every class branching of the trunk on
Figure 3.1 inheriting directly from Object. The current designs enforce much greater
uniformity among important mathematics and physics classes by moving them to
more meaningful positions further down the class hierarchy.

3.1.3 Development Guidelines

The development guidelines of Object Abstraction include:
* A dictionary of translating between terminology for C++ , CommonLisp, and

standard OOP.
* Naming conventions for methods - these specify such characteristics as return

type, inlining, image boundary handling, immutable versions, etc.
* Notions of abstract type and implementation hierarchies embedded in the class

hierarchy - this separates method definitions from slot definitions so that
highly constrained objects far down in an inheritance hierarchy can have the
union of all supertype methods names without carrying around extra slots de-
fined in many unrelated implementations of supertypes.

@ Use of source preprocessing tools to aid C++ development.
* Use of persistent object techniques.
* Views of objects - objects wrap around other instances to change the

apparent set of methods or interface (e.g., a view is a low-cost and consistent
way of creating a vector-valued image from a sequence of images and visa versa).

The guidelines aim at producing efficient class hierarchies free of semantic conflicts
on methods or slots (i.e., potential conflicts due to multiple inheritance are not left
chance).

9

3.2 Classes and Conventions

This section shows how the IUE class hic.'archy is organized around a single root
class (Object), a single metaclass (Class), and a variety of math and physics oriented
classes. Object and Class work together to define the environment-level behavior
shared by all objects. The math and physics classes define the fundamentals of
world objects, relations, sensing, networks, and image understanding. Classes for
I/O channels and display/interaction devices are not covered.

To help with the organization of a powerful and uniform environment, we propose
effective approaches for several areas, including:

9 Vocabulary for the object system (especially since we use both C++ and CLOS
in the IUE)

* Capabilities that all objects share

* Tools to mechanically generate code required by the environment (such as for
class object creation, instance copying, and I/O)

e Naming conventions (especially with regard to how names map into combi-
nations of auxiliary concepts such as inlining, declaring the return type, dy-
namic binding, static binding and function name overloading, mutable versus
immutable objects, free versus member functions)

9 Hierarchy that introduces math and physics related methods early on in a few
central classes (e.g., hasMember for a collection can be used many levels down
in the hierarchy to test whether a point is inside 3D object). The hierarchy
defines the primary interfaces for each object type (declaring, for example, that
an Image has primarily a functional interface rather than that of a kind of 3D
object with pose.)

* Parametric freedoms allowing the Collection class to be specialized to such
diverse objects as sequences of arbitrary Objects, unsigned char valued arrays,
and procedurally defined Functions

@ Network classes sufficient for managing constraints, relational databases, and
Bayesian inference networks

9 Abstract classes for separating method interfaces defined for a class from the
internal representations used by instances. This is needed so that highly con-
strained objects far down in an inheritance hierarchy do not have to contain the
union of slots for all the complex, less constrained objects above.

10

* View objects for resolving method name conflicts that arise when two logical
views of one instance would naturally use the same method name, but for dif-
ferent purposes.

Each of the above issues is now addressed.

3.2.1 Vocabulary

Table 3-1 lists C++ and CLOS names for approximately equivalent concepts. The
table also lists our preferred usage in the left column.

3.2.2 Common Capabilities

The capabilities common to all classes are organized around a single root superclass
and a metaclass (a class whose instances each describe a unique class). The approach
using these two classes is very close to that followed by CLOS, the C++ National
Institute of Health Class Library (NIHCL) and Smalltalk. Applying the approach to
C++ requires considerable discipline. For CLOS, it is relatively easy.

We base all IUE classes on a single root superclass, Object. There are at least two
strong arguments doing so. First, in OOP, this is a natural way to be sure that every
instance has at least the minimum interface to interact with the standard tools of
the environment. Second, without a root Object class, the strong typing of C++,
forces the use of parameterized versions of subclasses of Collection to store instances
from each disjoint inheritance hierarchy. Storing instances from disjoint inheritance
networks in one collection requires type-violating casts.

We have also chosen to define one class (a metaclass) whose instances represent
the characteristics of some other class. An environment often needs to examine the
structure of an object and choose operations based on different types and classes. As
C++ provides no default way to query an instance about its class, we define one.

3.2.3 Code Generation

It is critical to make creating a new class easy. In C++, this almost certainly implies
tools to scan *.h files and mechanically generate code for such activities as creating
a class object, and defining the virtual functions supporting instance copying, I/0,
display, editing, etc. Although this section points out the need for such tools, it does
not present their design.

11

Table 3-1: Vocabulary Choices for Object-Oriented Programming
Concepts.

Preferred Names Other Names and Usages

Virtual Function Generic Function (with Dispatch on Only First Argu-
ment), Message, Virtual Member Function

Generic Function Multimethod, Would be a Virtual Function on more than
One Argument (This Restricted Notion of Generic Func-
tion is Nonstandard, but Makes Clear a Useful Distinc-
tion.)

Instance Object

Class No Other Name
Method Virtual Function Definition
Call a Virtual Function Send a message

Call a Generic Function Method Dispatch

Self First Argument of a Generic Function
Method Combination Daemons (no built-in C++ analog)

Superclass (Virtual) Base Class (C++ and CLOS Handle Conflict-
ing or Ambiguous References to Slot and Methods Dif-
ferently)

Direct Superclass Direct Virtual Base Class
Indirect Superclass Indirect Virtual Base Class

Subclass Derived Class
Direct Subclass Direct Derived Class
Indirect Subclass Indirect Derived Class
Nonvirtual Base Class No good CLOS Analog

Abstract Class Mixin (Eiffel uses Deferred Class)

Nonvirtual Member Func- Statically Bound Member Function (CLOS does not di-
tion rectly support static overloading of function names. Also,

CLOS on specializes on a fixed number of arguments for
all methods)

Slot Member Object, Instance-Allocated Slot (bInstance Vari-
able

Static Member Object Class-Allocated Slot (Smalltalk uses Class Variable)

Free Function No Other Name
const Object Immutable (no associated CLOS syntax)

inline Function Macro Expanded or Inlined

12

3.2.4 Naming Conventions

We use several naming conventions in this section. The conventions (adapted from
X-Windows standards) are:

* The main part of class names begin with a capital letter. Class names with
multiple words are concatenated with each word capitalized. Sometimes modi-
fiers, such as component datatype names, are appended to the main part after
an underscore. An example class name is SomeKindOflmage.int.

* Slot names are all lower case and, if multiple words long, have words separated
by single underscores. An example slot name is this-is-a.slot.

@ Function names have the following format (bracketed items are optional):

mainPart [-Return Type] [_PostfizModifier]

* The return type of a function may be specified by name after the main part of
a function name and before the postfix modifiers.

* Postfix modifiers of function names are (at least) of the form:

E-E [n] c [Eni] [En[m] E En[v] I

where:

o n - Not

o c - Const (function does not modify first argument's value)

o i - Inline

o m - Member Function

o v - Virtual

9 The characters <T> can be freely replaced with the name (possibly using an
encoding scheme) of any standard C++ or Lisp datatype (e.g., unsigned-char
or double).

The postfix modifiers allow the developer to consistently name the multiple different
functions (up to 16 for one mainPart name) that perform one logical task, but satisfy
different requirements for speed, safety, time of binding, and ability (in C++) to
reference functions by pointer. (Actually, the "member" and "not member" options
are redundant since C++ allows both types of functions to be named identically
and still be uniquely referenced using "::" syntax.) Other modifiers options can be

13

added to indicate choices such as image access boundary handling (e.g., no checking,
reflection, wrapping, default value).

The postfix modifiers have no defaults. That is, the exact meaning of an unadorned
function varies from function to function. The designer is free to choose the unadorned
name for the most commonly used version of the function. The n option can negate
any of the c, i, m, or v options implicitly chosen for the unadorned function.

In C++ and CLOS, the return type of a function does not enter into the generic
or virtual function method dispatch calculation. For efficiency, we often want to
have logically similar functions be implemented completely differently depending upon
desired output types. E.g., an inline method that returns a char from a char array
object could be many orders of magnitude faster than a similar method that returns
an instance whose state represents a char. The naming conventions address this need
with the Return Type portion of the function name.

The methods chosen to be defined in this section do not use postfix modifiers.
Modifiers will be important to the final IUE, but are not essential to the presentation
of an overall logical design.

3.2.5 Hierarchy

The class hierarchy (of Figure 3.1) includes the root Object class, the Class class, and
math and physics related classes. The figure shows the hierarchy only to depths where
it touches the top level classes being designed by other organizations represented on
the IUE design committee. The hierarchy shows that an Image inherits from Array,
Function, Relation, Set, Bag, Collection, and Object. This structure prescribes a host
methods for Image. The definitions of many methods will be inherited, the remainder
are supplied by the implementations of Image and its subclasses.

3.2.6 Collection Class

The Collection class is basic to much of the hierarchy. It must cleanly specialize in
multiple directions. Different subclass need to represent

9 Finite, countably infinite, and uncountable (at least conceptually so) numbers
of elements

* Object-valued or language-primitive-valued (e.g., int) element types

9 Constraints on types or values of elements to be inserted.

Parameterization by two functions makes Collection sufficiently flexible. These func-
tions are the equivalence function and insert compatibility test. Additional useful

14

parameterizations are a union compatibility test (actually derivable from the insert
compatibility test) and a potential constraint on element type.

3.2.7 Network Classes

Relational databases, Bayesian networks, function composition networks, and con-
straint networks are all networks for managing joint information over a set of at-
tributes. The structures necessary to properly support these networks extend well
beyond the usual undirected and directed graphs of links and arcs connecting two
nodes at a time. (We choose to use "link' rather than "edge," the standard, to avoid
clashing with the image related usage of "edge.") Of particular importance are gen-
eralizations of links and arcs to connections between sets of nodes. These are the
hyperlink, or set of nodes, and what we will call the hyperarc, or directed pair of
sets of nodes. A set of hyperlinks forms a hypergraph and a set of hyperarcs forms
what we will call a dihypergraph (directed hypergraph). Also necessary are attributes
(nodes) with their domain sets. Further, a structure at the heart of efficient inference
and query algorithms is the Join tree of hyperlinks (undirected tree of hyperlinks with
the intersection of any two hyperlinks contained in every hyperlink in the connecting
path).

3.2.8 Abstract Classes

In this description of the hierarchy, Collection and its subclasses are abstract classes,
that is, classes that define method name and signatures, but do not provide slots
and implementation. This allows objects of widely varying implementation but iden-
tical interface to be created with no superfluous per-instance overhead. As the IUE
develops, the hierarchy will be filled in with multiple subclasses supplying specific
implementations for each abstract interface.

3.2.9 Views

With a complex hierarchy built largely on sets, relations, and functions, it is in-
evitable that one logical view of some class will involve a set, relation, or function
interface, but not in the way implied by the inheritance hierarchy. For example, the
inheritance defined view of a BayesNet is as a directed hypergraph with set-like inter-
face to a structured set of Hyperarcs. Because a BayesNet can logically be viewed as a
joint probability density (a function), it could also have a set-like interface to a struc-
tured set of Tuples (mapping random variable values to real numbers). A View object
would wrap around the BayesNet instance and convert the Set interface methods of
union, insert, etc. to operate on the set of Tuples instead of the set of Hyperarcs.
We propose that view creating methods (such as asFunction) be provided as needed

15

to wrap instances with new instance with modified interfaces. The view objects of
Interviews are similar to our View objects, but they are used only to redefine the user
interface methods of an object instead of any set of methods. This section will not
specify view objects other than to say that there will be many view subclasses and
their use should be an integral part of the environment.

3.3 Hierarchy Class Definitions

3.3.1 Object

The Object class is the root superclass of all classes in the environment. In conjunc-
tion with the Class metaobjects, Object specifies the interface for the environment-
level operations that apply across all instances. These operations include:

"* I/0

"* Display and hardcopy

"* Type queries

"* Equality queries (default equivalence function)

"* Copying (multiple semantics)

"* Mutability and locking control

"* Environment queries (version, source code, object code, documentation)

"* Inspecting and editing

"* Memory management (to be specified)

"* Persistence (to be specified).

Table 3-2 presents the method signatures (i.e., names, input types and output
types) for Object. Table 3-3 expands the signatures to include documentation of each
method.

3.3.2 Class

A Class describes an object class. Each class has a corresponding unique Class
instance. Table 3-4 shows the method signatures and Table 3-5 shows the definitions.

16

Table 3-2: Object Method Signatures.

Name Input Types Output Types

newLike () Object
copy () Obj:Object
deepCopy () Obj:Object
shallowCopy () Object
deepenShallowCopy (Object) Object
classOf () Class
isSame (Object) Boolean
isKindOf (Class) Boolean
species 0 Boolean
isSpecies (Object) Boolean
isUnique () Boolean
isImmutable () Boolean
changeTolmmutable () Status
isLocked () Status
lock () Status
unlock () 1 Status
destroy () Status
deepDestroy () Status
reset () Status
isEqual (Object) Boolean
display (Displayable) Status
inspect 0 Status
edit 0 Status
describe (OStream) Status

17

Table 3-3: Object Methods Definitions

Name Input Types Output Types

newLike () Object
Make a new instance of the same class as self and load with default values.
copy 0 Obj:Object
The "natural" copy. Make a new instance of the same class as self. Copy "shal-
lowly" those slots that expect address equality or whose objects are immutable. Copy
others "deeply." Further, copy is free to change the internal structure as long as
self->isEqual(Obj) would be True if executed and value of a mutable object is not
stored by copying the mutable object's address.

deepCopy () Obj:Object
Make a new instance of the same class as self, copy non-pointer values from self to
Obj, and set all internal pointers of Obj to deepCopy's of what self points to.

shallowCopy () Object
Make a new instance of the same class as self, copy non-pointer values from self to
Obj, and set all internal pointers of Obj to point where the internal pointers of self
point.

deepenShallowCopy (Object) Object
Turn a shallowCopy'ed instance into a deepCopy'ed one. Method used by deepCopy.

classOf () Class
Return the Class instance corresponding to the class of self.

isSame (Obj:Object) Boolean
Return True iff self and A are Obj are identically the same object (same address).

isKindOf (c:Class) Boolean
Return True iff self is an instance of the class c or its subclasses.
species () Boolean
Return the class (often abstract) in the hierarchy that defines the semantics of the
state of self.
isSpecies (Obj:Object) Boolean
Return True iff self and Obj are of the same species.

isUnique () Boolean
Returns True iff self is the only object that can obtain its current state.

islmmutable () Boolean
Returns True iff the apparent state of self can never (again) be changed with the
object interfaces. Once self->islmmutable() returns True, it should always return
True.
changeTolmmutable 0 Status
If possible, change the state of self so that self->islmmutable(will return True.

18

Table 3-3: Object Methods Definitions (cont'd)

Name Input Types Output Types
isLocked (Status
Return True iff the apparent state of self cannot currently be changed with the object
interfaces.
lock (Status
If possible, change the state of self so that self->isLocked will return True.
unlock () Status
If possible, change the state of self so that self->isLocked will return False.

destroy 0 Status
Destroy self.

deepDestroy 0 Status
Recursively destroy self and all its contained objects where what is "contained" is
class-specific.

reset () Status
Reset state of self to the class-specific default.
isEqual (Obj:Object) Boolean
isEqual forms the species-specific "natural" equivalence relation between instances.
It returns True iff self and Obj are "equal".
display (D:<Displayable>) Status
Display self on D.

inspect 0 Status
Initiate the interactive inspection of self.

edit 0 Status
Initiate the interactive editing of self.

describe (Out:<OStream>) Status
Describe self on Out.
name () String
Return the name of the class referred to by self
directSuperclasses () Set
Return the set of class instances of the direct superclasses of class referred to by self.
superclasses () Set
Return the set of class instances of the superclasses of class referred to by self.

directSubclasses () Set
Return the set of class instances of the direct subclasses of class referred to by self.

subclasses () Set
Return the set of class instances of the subclasses of class referred to by self.

19

Table 3-3: Object Methods Definitions (cont'd)

Name Input Types Output Types
members 0 Set
Return a set of slot and function descriptors describing the class referred to bý belf.
A descriptor should include name, slot or function, type, signature (if describing
a function), access restrictions, file name where function is defined, whether static
or class-allocated, etc. Building descriptors requires parsing code (or perhaps using
symbol table information).

headerFile () FileName
Return the file defining the class referred to by self.
version () Version
Returns a version number or name for the class referred to by self.

Table 3-4: Method Signatures

Name Input Types Output Types
name 0 String
directSuperclasses (Set
superclasses 0 Set
directSubclasses (0 Set
subclasses (0 Set
members 0 Set
headerFile 0 FileName
version (0 Version

20

Table 3-5: Method Definitions

Name Input Types Output Types
name () String
Return the name of the class referred to by self
directSuperclasses () Set
Return the set of class instances of the direct superclasses of class referred to by self.
superclasses () Set
Return the set of class instances of the superclasses of class referred to by self.
directSubclasses () Set
Return the set of class instances of the direct subclasses of class referred to by self.
subclasses 0 Set
Return the set of class instances of the subclasses of class referred to by self.
members () Set
Return a set of slot and function descriptors describing the class referred to by self.
A descriptor should include name, slot or function, type, signature (if describing
a function), access restrictions, file name where function is defined, whether static
or class-allocated, etc. Building descriptors requires parsing code (or perhaps using
symbol table information).

headerFile () FileName
Return the file defining the class referred to by self.
version () Version
Returns a version number or name for the class referred to by self.

21

3.3.3 Collection

A Collection represents an object that "collects" or "contains" other objects. The
collection class specializes to many classes including Bag, Set, Relation, Function, and
Image. A raw Collection has axioms that allow for remembering duplicate elements
and insert order. A Bag adds an axiom that makes it impossible to remember insert
order. A Set adds an axiom that makes adding an element many time the same as
adding it only once. Other subclasses add axioms to restrict the types of elements
that can be added (e.g., Tuples with instance-specific schema for relations) and vary
the notion of equivalence between elements (e.g., a IdentSet would check the address
of instances while an IntSet would check for the numerical value of instances or
primitive datatypes.) Table 3-6 presents the signatures of a minimal set of methods
for Collection.

Elements must satisfy insertCompatible to be valid arguments to insert. Other
collections must satisfy unionCompat ible to be valid arguments to union, intersect,
etc. Many subclasses of Collection do not have to to check for argument compatibility
since any argument that passes static type checking (or dynamic dispatching) will be
acceptable.

A fundamental property of each collection is its equivalence function (equivalen-
tArgs) for determining if two objects are equal for all purposes of the collection. A
collection is best thought of as containing abstract elements rather than objects them-
selves (only when the equivalence function is object equivalence not a more general
function of internal state). An element should be thought of as naming the abstract
object equivalent to the instance. For example, a collection does not necessarily "re-
turn" the same insta. -s (as chunks of memory) that are inserted, it can return any
equal (under the equivalence function) objects. Also, any two sequences of operations
differing only by substitution of equivalent instances and ending in a "isMember" or
"isSubset" type of test will yield identical test results.

Equivalence relations allow collections to be extensible and highly efficient. For
instance, suppose that "object value" is the equivalence relation for a certain set.
Then, the collection does not guarantee that an object, once inserted, can ever be
recovered. The class simply guarantees that an object of the same value can be
recovered. Specialized collection classes may be then able to use efficient memory
schemes (like arrays) to minimize storage and to speed computation. It can also
considerably reduce the work required of a persistent storage system. Only values
needed to copy objects (not objects themselves) have to be stored, thus eliminating
the overhead of maintaining persistent UID's. The option for storing memory-objects
is always available by making the equivalence function be #'EQ (or &a == &b).
Cartesian product equivalence functions are used for relations and functions. This
unifies numerous data types often treated more independently. Examples include

22

Table 3-6: Collection Method Signatures.

Name Input Types Output Types

equivalentArgs (Object, Object) Boolean
unionCompatible (Coil: Collection) Boolean
unionCompatible (Primitive:<T>) Boolean
insertCompatible (Obj:Object) Boolean
insertCompatible (Primitive:<T>) Boolean
isSingleton () Boolean
isEmpty () Boolean
isFinite () Boolean
isCountable () Boolean
isCountablyInfinite ()_Boolean
isUnCountable () Boolean
cardinality () int
cardinalityl () Cardinal
hasMember (Obj:Object) Boolean
hasMember (Primitive:<T>) Boolean
disjoint (Coil: Collection) Boolean
isSubset (Coil: Collection) Boolean
insert (Obj:Object) Collection
insert (Primitive:<T>) Collection
remove (Obj:Object) Collection
remove (Primitive:<T>) Collection
removel (Object) Collection
removel (<T>) Collection
union (In:Collection) Out:Collection
difference (In:Collection) Out:Collection
intersection (Collection) Collection
relativeComplement (Collection) Collection
symmetricDifference (Collection) Collection
choosel (Collection) (Object Boolean Collection)
choosel (Collection) (<T> Boolean Collection)
map (Collection, func,Class) Collection
map (Collection, func,Class) Collection
mapc (Collection, func) void
mapc (Collection, func) void

23

numerical arrays, object arrays, hashtables, relational tables, and procedurally defined
functions.

If the equivalence function is object identity (which we will call the object eq), then
the actual instance inserted into the collection has to be retrievable/testable. If the
equivalence function allows different objects with the same "values" to be equal, then
there is no guarantee that the instance inserted is actually stored (e.g., a relational
table will generally disregard an inserted tuple object after the tuple's field values have
been extracted and stored in a relation-specific internal form). An equal-collection
cannot rely on storing a mutable object as the sole memory of an insert as the object
could mutate and no longer denote the same value it did at time of insert.

Persistent collections introduce further considerations (e.g., a persistent eq-collection
can contain only persistent objects). A set of consistency rules and implementation
possibilities are as follows:

e persistent eq-collection =• elements must persist

* eq-collection =• can use any object reference (e.g., persistent Object ID (OID)
or pointer) for representing elements in working storage

9 equal-collection and immutable element =* can use any object reference or any
equivalent data for representing the element in working storage

* equal-collection and mutable element =# element must be "copied" into im-
mutable equivalent data for working and/or persistent storage

* persistent eq-collection =o must use OID for representing elements in persistent
storage

9 persistent equal-collection and immutable element =* can use OID (if available)
or data for representing element in persistent storage.

* persistent equal-collection and mutable element element must be "copied" into
immutable equivalent data for working and/or persistent storage

3.3.4 Bag

A Bag is a collection of order independent elements with meaningful duplicates.
The method signatures are unchanged from those of Collection.

3.3.5 Set

A Set is a collection of order independent elements with duplicates meaning the
same as only one. The method signatures are unchanged from those of Collection.

24

3.3.6 PointSet

A PointSet is set of points in an n-dimensional Euclidean space.

3.3.7 PointSpace

A PointSpace is an n-dimensional Euclidean space. Abstract points in PointSets can
be arbitrarily subtracted to form vectors. Vectors can be added to points. Elements
of base PointSets have no scalar multiplication operator and only barycentric addition
(coefficients sum to one). Elements of base PointSets are abstract, without methods
for coordinate representation, default point frame, or default vector basis. (They can
be, for instance, abstract handles to locations in the real world.) The base PointSet
class is specialized in different ways to get many important classes. Through different
types of specialization, instances of subclasses may have:

* Specific embedding dimensions (dimension of the PointSpace containing the
PointSet).

* Specific embedded dimensions (manifold dimensions of the PointSet itself).

* Points with associated coordinate representations (with respect to a distin-
guished frame per instance).

* Vectors for elements. There is a distinguished origin per instance, and new
operators are defined. These include multiplication by a scalar, vector addition,
inner product, and (for three-dimensional vectors) cross-product.

* An interpretation as a specific physical concepts (e.g., physical space, time,
space-time, image pixel locations, window pixel location, viewport space, screen
locations, color space, spline function space).

Such specializations include: Frame, Basis, Interval, Region, Volume, T~melnter-
val, DurationInterval, ScreenFrame, ColorBasis, TimeFrame, VectorSubspace, Coor-
dinatePointSpace CoordinateVectorSpace, and TriangularFacet.

A potentially useful way to specify the class of points that are elements of a PointSet
is to identify singleton sets with points. With this, operations automatically generalize
from points to sets of points and there is no need to define classes both for sets of
points and for points themselves. This meriology is the most common method of
treating schemas in the database literature. Also, Wand has suggested it as part of a
general approach to modeling real things.

A request for a change of basis (change of frame) includes the new basis (frame) for
the coordinate representation. This is different from a transformation operation that
keeps the same basis or frame (if one is used at all). Dynamic type checking should

25

Table 3-7: Additional Relation Method Signatures

Name Input Types Output Types
join (Relation) Relation
relationalDivide (Relation) Relation
select (Expression) Relation
select (Function) Relation
projectOn (Set) Relation
projectOff (Set) Relation
thetaJoin (Relation) Relation
semiThetaJoin (Relation, Expression) Relation
attributes (Relation) Set
addAttribute (Relation, Attribute, Object) Relation
removeAttribute (Relation, Attribute) Relation

not allow operations on mismatched frames (or, if possible, will automatically put
two coordinate representation into the same frame via appropriate change of frame
calculations).

3.3.8 Relation

A Relation is a set of tuples, all having the same domain (schema). A tuple is a
mapping from an index set into values. The index set is a set of attribute objects,
not simply a set of consecutive numbers starting at zero or one. Table 3-7 gives the
additional method signatures for a Relation.

3.3.9 Function

A Function is a relation in which the values of the doam attribute set uniquely
determine values of the range attribute set. Every point in a doam set maps to a
point in the ran set. Further, every point in the ran set corresponds to one or more
points in the doam set. dom and ran belong to (possibly larger sets) domain and range.
Table 3-8 gives the additional method signatures for a Function.

3.3.10 Tuple

A Tuple is a function with a domain that is a set of attributes.

26

Table 3-8: Additional Function Method Signatures

Name Input Types Output Types]

domain (Set
range () Set
dom () Set
ran () Set
isPartial () Boolean
isOneToOne (Boolean
isOnto (Boolean
isInvertible (Boolean
evaluate (Object) Object
evaluate (<T>, <T>, ...) Object
atPut (Object, Object) Boolean
compose (Function) Function
composeClass (Function) Function
composeCompatible (Function) Function
invert 0 Relation
restrict (Set) Function
overridingUnion (Function) Function
curry (Function) Function
dispatch (Function, Function, ...) Function

27

3.3.11 RealFunction

A RealFunction is a function with range a subset of the real numbers. It maps all
unary and binary numerical operators (e.g., log and x) onto the binary RealFunction
operators.

3.3.12 Array

An Array is a function with doam a subset of [i :j] x [k : 11 for integers i, j, k, 1.

3.3.13 Image

A Image is an array with extra properties related to its collection or creation.

3.3.14 DiHypergraph

Name Input Types J Output Types
isPolytree () Boolean
isTree () Boolean
nodes () Set
arcs () Set
parentNodes (Object) Set
parentNodes (Hyperarc) Set
childrenNodes (Object) Set
childrenNodes (Hyperarc) Set
parentArcs (Object) Set
parentArcs (Hyperarc) Set
childrenArcs (Object) Set
childrenArcs (Hyperarc) Set
asRelation () Relation

3.3.15 BayesNet

Name Input Types Output Types
prior (Object) BayesArc
bel (BayesArc) BayesArc
asBayesArc (BayesArc

28

3.3.16 Hyperarc

Name Input Types I Output Types

parentNodes () Set
childrenNodes () Set
asFunction)0 Function

3.3.17 BayesArc

Name Input Types Output Types

multiply (BayesArc) BayesArc
instantiate (Tuple) BayesArc
instantiate (Tuple) BayesArc
condition (Set) BayesArc
divide (BayesArc) BayesArc
marginal (Set) BayesArc
multAndMarginal (BayesArc, Set) BayesArc

3.3.18 Attribute

Attributes are elements of tuple domains. They are objects in many presentations
of relation databases. They are random variables in condition probability densities
and Bayesian networks. Attributes can have associated domain constraints, refer to
measurable quantities, have units, and have physical interpretations (like row of a
display screen).

3.3.19 Unit

Subspaces, frames and bases can be specialized to allow individual elements to
be measurable with respect to certain known units. Distinguished (const and often
static) instances of the Unit class include: meter, kilogram, second, coulomb, radian,
degree (absolute), and monomial combinations (e.g., inch, in2 , and w/sr-Hz).

3.3.20 Dimension

Each Unit instance is associated with a type of measurement quantity (or dimen-
sion). Instances of the Dimension class include: length, mass, time, charge, plane-
angle, and temperature (with many dozen more).

Section 4

User Interface

4.1 Introduction

A major objective of the Image Understanding Environment User Interface (IUEUI)
is to give users flexible, simple, and powerful tools for exploring data, algorithms, and
systems. Another fundamental objective is to create an interface wbich will be sup-
ported by ongoing and future developments in the software world at large. To achieve
this, we want to capture the critical functionality of our domain in a small number of
objects which are built on top of existing interface packages and interface construc-
tion toolkits. Efficiency and long term extensibility will increase by implementing
features on the correct level. The same objects which will be used to implement the
user interface can be specialized for users of different skill levels and objectives. This
is all critical for the long term use of our environment because we can depend on dra-
matic changes in interface devices, voice input, video publishing, network interfaces,
hypermedia databases, tools for cooperative work and communication. These are all
things we want the environment to take advantage of as they are developed.

The Interface of the IUE is described in terms of three levels (Figure 4-1). The
Graphics Level is the underlying "machine independent" package for basic display
and graphic operations and telling the screen what to do. Examples would be X and
Postscript. Machine independence is somewhat relative, so for now, this level can
include other packages as long as they support similar functionality. The Interface
Kit Level consists of existing packages for the creation and rapid prototyping of
user interfaces and related tools on top of graphics level software. Examples are such
things as Interviews, TAE, NeXTSTEP. This also must include use of tools found in
the selected software development environment such as editors and debuggers. The
Image Understanding Environment User Interface (IUEUI) Level consists of
the objects in the user interface. This includes such things as object displays, plotting
displays, several types of browsers, and structures for describing the interface context.
The IUEUI consists of a small set of objects which can be freely combined for very
powerful results. The specifications of these objects is relatively independent of the

29

30

Basic Objects Support Objects GUI Access Objects

Displays Display Mapping Menues
Pixel Snapshot Gizmos/Widgets
Surface Display LUT Windows
Local Graphics Display History Icons
Plots Layout

Browsers
Set/Database
Object Registered
Graph
Hierarchical IUEUI Object Level

User Interface Kits Development Environment
InnerViews Debuggers
TAE Editors
NeXTSTEP

Interface Kit Level
•Functional Definition

X PostScript Silicon Graphics

Graphics Level

Figure 4-1: Levels of Interface Implementation.

31

other two levels although it will be required to show in the programmers manual how
the functionality of the IUEUI objects are realized at the other two levels.

4.1.1 Paradigms

Some of the different interface paradigms we have discussed are:

"* Subject/View

"* Data/Flow

"* Display methods as integral parts of objects

These are not disjoint in our design and each reflects critical capabilities for the
IUEUI. An object-oriented methodology is essential for the interface because we don't
want users to have to use literally thousands of different functions depending on the
type of object they are trying to display, browse, or inspect. This is often a problem
with C-based environments because users need to specify the type of value and the
type of object. At the same time, we need to provide explicit, powerful tools so users
can control all aspects of data visualization at anytime. We often want to display
the same object in several different ways (displaying the gradient as a vector field,
or mapping the different components of the gradient onto different color bands). It
is not sufficient to let the user simply tell an object to display itself and then let the
object "decide". It is essential that users be able to view objects in a completely
controlled manner and that there are intelligent defaults reflecting common usage for
less experienced users. Dataflow capabilities are necessary to allow a user to create
a complex process by interactively specifying the combination of other processes and
to monitor their execution.

4.2 Required Functionality

This section describes the necessary functionality for the user interface based upon
the union of attributes found in several different existing IUEs and, in some cases,
their deficiencies.

e Object Display Control We want the user to have complete control of how
spatial objects (images, surfaces, features, networks, pyramids, etc.) are viewed
with maximal flexibility and ease of specification. The mapping between a
spatial object and a display window needs to be explicitly represented by a
Display Mapping Object that can be manipulated, set, and saved. There are
two basic aspects of this. One concerns how positions on the object get mapped

32

onto positions in a display windows. For this, users want to control such things
as zooming, panning, perspective, warping, and other geometric operations. For
now we refer to this as the Position Mapping. The other aspect concerns how
values of an object get mapped onto display window values such as intensity
and color (sometimes text, icons, and graphics). For now we refer to this as the
Value Mapping.

The distinction between the position and the value of a spatial object can be
to

complicated and a user needs to be able access any attribute of an object and to
display it as he wishes. For example, a discrete curve can be viewed as a mapping
from integer indices onto 2D positions with respect to an image coordinate
system. When I overlay the curve on top of an image, I am mapping these
2D positions along the curve onto window positions using the same position
mapping that was used for the display of the image. I also would like to control
the color/intensity of the display at these points based upon registered values
associated with the curve (such as curvature). For example, a user might want to
display an intensity image in 8-bits of green intensity and then overlay extracted
curves on top of this with the display of curvature values along the curve mapped
onto 8-bits of red intensity. And to say this at least as directly as the previous
sentence.

"* Virtual Objects When display transformations are applied to an object, it
should not involve creating a new object: only the display in a window is
generated. An example is manipulating the underlying color look up table to
perform a thresholding operation. In this case, there is no thresholded image
object produced, only that which is displayed in a window. This goes by many
names in different systems such as Pixel Mapping Functions, Dynamic Color,
Generalized Color Look-Up Tables. It includes operations such as thresholding,
histogram equalization, fitting to a linear display range, overlays, and others.
The display buffer is a short term memory for a view of a displayed object: we
should perhaps provide routines to use this directly. Some work on the Lisp
Machines would implement image processing operations by bit-blitting.

" Commands and Intelligent Defaults to Deal with 8-bit, 24-bit, 32-bit
displays: The interface should be able to deal with different types of display
devices, taking into account how deep the display buffer is.

" Display Overlays: It is important to be able to display extracted features and
values overlaid on top of images (and other objects), as in displaying a vector
field on top of an image, or in displaying extracted edges and junctions. The
overlays can occur with respect to the display window (annotating an image
with text) or with respect to the displayed objects (marking a displayed surface
with features that occur upon it). This is one aspect of the specification of
multi-object displays.

33

"Linking Displays and Browsers: Viewing transformations can be concate-
nated through links between displays. The view (the mapping between a spatial
object and a display window) in one window can be concatenated with the view
specification in another. A common example is using one window to zoom onto
the display in another or using one window to display a selected portion of
another. Panning and Zooming are so common they will probably be directly
supported as a default or through a system level menu. It is also useful to have
links between browsers, such that when an object is selected in one browser,
the attributes of the selected object can be viewed in another.

"* Interface Context: Information describing the current context of the interface
state is used for intelligent defaulting. This would include things such as the
current window, the current mapping, established links between windows, the
thickness of lines in graphic overlays, the current displayed objects, the layout
of windows and browsers on a screen, and several other things. This would be
an extension to the underlying context provided by the graphics level. These
contexts can be saved and read. Selection of information through browsers also
has a context for intelligent defaulting. This includes such things as the most
recently selected object, links between browser windows. This is especially
important when interactive browsing is used for sequences of queries over a
database.

"* Interactive Command Language: All display actions involving objects can
be specified through an interactive command language. This should have intel-
ligent defaults and abbreviations (such as displaying to the current window if
none is specified). These commands should also be usable in code for creating
scripts and general display routines. It is not necessary that all interactions take
place through this command language (Some will be invoked by menus and spe-
cial keys and refer to the current display context). The Interactive Command
Language is especially important because it provides a functional specification
of the entire interface.

"* Process Monitoring: Monitoring the execution of a task; visualizing pro-
cessing at the current locus of processing. This should be performed using the
general browser class over a task database.

"* Animation Tools/Operations: dumping window or screen output to video
tape; cycling through a sequence of displays or displays written out to file;
cycling through a sequence of displays; use of double buffering in the display
buffer.

" HardCopy Tools/Operations: dumping window or screen output to paper,
slides, overhead transparencies. [Note: should we make PostScript compatibil-
ity a requirement?]

34

* Interactive Command Buffer: The user can type-in display commands in
an interactive buffer; he can cycle through commands, he can perform window-
based editing operations on commands in the command buffer and then specify
their re-execution. A good model is the ease of use with the Lisp Listener. We
need the same functionality for interface and object interaction operations even
in a C-based environment.

* Synergy of Interface and Development Environment: When moving
from the debugger and editors for code development to the display and browsing
operations of the interface, it should not feel like starting up completely different
processes.

* Object Interaction Displays are also used for interacting with spatial objects
in order to access values in them, move them around, and apply operations to
them. In interactive processing, when the user clicks on the display window,
the position in the window and the current object and the current object value
are saved. The current object can be explicitly specified or taken from context.
Disambiguation may be required if there are multiple overlapping objects. The
user may be required to use a label plane (an image of pointers to objects
which occupy a given position) or use geometrical data base operations in the
IUE. Both are potentially expensive and don't reflect operations specific to the
IUEUI but are general IUE spatial data base operations that can be accessed
through the IUEUL It is sufficient that the interface is able to return the selected
object(s) and object position from the object display mapping.

* Graphics and Text Overlays: This involves writing and graphic drawing
(both 2D and 3D) with respect to a display. This is especially useful for slide
creation, documentation, and data generation. It has several modes that need
to be distinguished. Sometimes we want to do this with respect to the window
in which a spatial object is displayed; sometimes with respect to the displayed
spatial object or object coordinate system (perspective view of an object model);
sometimes we want the generated graphic display to generate and instantiate
corresponding IUE objects; and sometimes we want to refer to the entire screen
on which several display may be present, as in connecting features in different
windows and browsers by arrows or annotations.

* Default layouts for windows and browsers: The desired layout of windows
and browsers can be saved and be available to a user when he starts using the
IUE. Several different such arrangement can be stored and brought back for
different situations under user control.

* Simplified Access to Interface Objects: The IUE should provide simpli-
fied, interactive access to the interface objects found in GUI Kits. Such things

35

as sliders, knobs, buttons, text input/output fields, menu creation and person-
alization, and icons.

" Display History: The sequence of display or browsing actions for a particu-
lar window or browser are saved and can be reaccessed and used for creating
animations.

" Types of Displays to be supported: Image, Edge/Contour, Vector, ID
Plot, 2D Plots, ND Plots, Features, Surface (grid and rendered), Volumes,
Color Images, Sets/Databases of feature objects [be able to refer to selected
attributes], Image Sequences, Animations of Image Sets, Gray scale Images,
Metrically embedded graphs (graphs showing relations between extracted image
features).

" Interactive Object Creation (Draw Objects): It should be possible to
create object interactively. This is useful for creating sample idealized data for
testing and development. Interactive Object Editing and Creation should also
be supported.

"* Updating Displayed Objects: In some cases we want a display or a browser
to be updated when an object changes (such as a browser for a database of
executing tasks).

" In-code Functions for prompting user for unspecified information and
other interface actions: enable user code to refer to interface actions. Ex-
amples: A routine can specify that a particular value is to be queried from a
user interactively or set from some gizmo/widget, or that a particular browser
field is to be updated when some state occurs or a process completes execution.

" Multiple Object Displays: A spatial object is viewed through a display
window by a mapping from the spatial object onto the display window. It is
important to be able to map several spatial objects onto the same window at
the same time or through the incremental creation of a display. Examples are
for such things as mapping different images in a stereo pair onto different color
planes; overlaying extracted features onto an image (or arbitrary surface). For
operations such as overlays, transparency, Color, Cycle, flashing, display buffer
animation.

" Mensuration tools: rulers, grid overlays, flashing them; orientations of rulers
under zoom-links between windows; and cursor type and the use of multiple
cursors. Whether the measurements are being made only relative to the 2D
display window or with respect to the spatial object, these can be built on top
of the basic interface capabilities and the display of IUE objects (in particular,
the interactively functionality of the display object and IUE objects such as
bit-mapped regions, line-objects).

36

* Incorporating Hardware Accelerators: The interface (and the IUE in gen-
eral) should be able to deal with different hardware accelerators and a dis-
tributed computing network.

* Interactive programming tools: Several questions remain to be answered:
Can these be as in Khoros (an image processing system with data flow pro-
gramming environment freely distributed by University of New Mexico)? Can
these be developed from the graph browser and icons? How are DataFlow
transformations handled?

* Device Menu Shortcuts (Bucky Windows): Many menu operations should
be mapped to combinations of key and mouse button processes. The user should
be able to modify and extend the default mapping.

e Access to and Integrated use of Established Visualization Packages:
There now exist several data visualization products (Plotting package in Math-
ematica, packages from Precision Visuals). We should select those which are
relevant and supply interfaces to them. In fact, we will find ourselves recreating
this functionality (especially for plotting). There are, however, problems with
data type compatibility, speed, selection tools to get exactly what we want dis-
played from these packages in the IUE. Much of the interactivity may not be
obtainable and the feel may be considerably different than the IUEUI.

4.3 IUE Interface Objects

We break the IUE interface objects into three basic classes (See Figure 4-2). The
first class consists of displays and browsers. These are the basic tools for viewing
an object and inspecting its symbolic attributes and relations (There are many com-
monalities between these objects that suggest a meaningful and general IUE interface
object). The major portion of what a user does with the interface will be based upon
these objects. The second class are the objects commonly used in the supporting
user interface mechanisms provided by the graphics and toolkit level (menus, wid-
gets, icons, etc.) but with simplified commands so they can be manipulated directly
by IUE users. The third class are support objects for such things as describing the
current interface context, the mappings from an spatial object onto a display window,
links between IUE interface objects, animation files, and several other things. Many
of these are not necessarily objects, but common data structures.

4.3.1 Object Display and Browsers

e Object Displays: (See Figure 4-3) This is for viewing objects which have
coordinate systems associated with them and mapping them onto a 2D display.

37

GUI Interface

Support Hierarchical

rowse" Object Registered
Set/Database
Single Object
Graph/Network Metrically Embedded

IUEUI Object Pixel

Vector
LocalGraphics -Edge

Nk •,r Cube

Display

Cb

Surface M Mesh
Rendered

2D
Plot-3D

"Parametric
ScatterGram
Contour

Figure 4-2: IUEUI Object Hierarchy.

It includes such things as images, curves, regions, object models, surfaces, vector

fields, etc. They support several types of operations for controlling the mapping
of an object to be viewed in a window and for interacting with a displayed object.
There are several subclasses of displays that will appear to the user to occur
in the same type of window. They are primarily distinguished by the types of

methods they understand and all inherit a large number of similar methods from
the general display class. For example, the overlay method means something

different in the context of a surface display than in the context of an image
display. The pixel display class is for viewing images and image registered

features. The local graphics display class displays objects by mapping their
values onto graphic objects such as lines and cubes. Examples are displaying
vector fields and edges. The surface display class is for displaying objects that

get mapped onto mesh or rendered surfaces. There are several different types
of plot display: ID, 2D, 3D graphs, histograms, scatter grams, perspective
views of functions and tables. Note: We may implement plotting windows

from existing packages (e.g., Mathematica). It will be complicated to extend or
integrate such plotting/visualization packages with the other capabilities which
will definitely be associated with display-windows (such as object interactivity
and selection, function application, window-linking). We may find that we

38

can live with this or we will need to implement some subset of these plotting
packages directly in our interface.

9 Browsers: These are used for actions such as queries over set of objects, deter-
mining and inspecting relationships between objects, process monitoring, and
inspecting values in an object. There are 2 different types of browsers: Field
Browsers and Graph Browsers.

Field Browsers consist of a regular array of fields. Fields can be filled with
text, icons, colors, colored text, text in particular fonts. Fields can have actions
associated with them when they are selected or a user changes the values in
them. We distinguish between four types of Field Browsers which inherit from
the general Field Browser class:

"o Set/Database Browser: This is presented as an array of fields. Each
row of fields corresponds to selected attributes of a particular object and
each column corresponds to common attributes over the set (or database) of
objects. An example would be browsing the database which describes the
current active object in the IUE to find the most recently created image from
some operations (See Figure 4-6).

"o Single Object Browser: Each row corresponds to the value of an attribute
for an object. This is used for inspecting a single object (See Figure 4-7).

"o Hierarchical Browser: Useful for text based inspection of graph structures
and trees. When an item is selected, the related items (along some relational
dimension) are displayed in the next column (See Figure 4-8). [Note: A
good example is the directory browser on the NeXT machine].

o Object-Registered Browser: This contains values extracted from a spa-
tial object, such as the intensity values in some square neighborhood of an
image. Depending on the dimensionality of the object (or relationships be-
tween component objects), this can be presented as a 1D array, a 2D Array, or
multiple 2D arrays and describes curves, images, image sequences, pyramids.
There are restrictions on whether it is possible to interactively change values
in the fields of an array browser. It should be possible to apply operations
directly to the values in the array browser to see the effect of an operation
in a restricted neighborhood of an object (See Figure 4-5).

Graph Browsers: These are for the display of graphs and networks, generally
representing an object as a node and links to describe relations to other objects.
Nodes are similar to fields in field browsers and can be filled with text, icons,
colors, colored text, text in particular fonts. Nodes can also have actions asso-
ciated with them when they are selected or a user changes the values in them.
Links can also be colored and selected. A typical use would be for the display
of a constraint network (See Figure 4-9). Note: For complicated relationships

39

or large sets of objects, these can become very complicated and we may need a
way (e.g., GRASPER) for segmenting nodes and links into spaces].

An important type of graph and graph browser is a metrically embedded
graph wherein the nodes (and perhaps links) are restricted to occur at posi-
tions with respect to a coordinate system. This type of graph inherits properties
from both the Graph Browser and a general spatial object which can be viewed
in a display window. An example would be an image registered network which
describes potential links between extracted features for displaying grouping op-
erations. An important attribute of metrically embedded graphs is that they
can be viewed as an object display for operations such as zooming and having
access to the underlying context in an image. [Note: We may also want to
distinguish tree graph browsers.]

4.3.2 Simplified access to GUI objects

"* Gizmos and Widgets: The IUE should provide simplified, interactive access
to the interface objects found in GUI Kits- such things as sliders, knobs, but-
tons, text input/output fields, menu creation and personalization. This will
involve commands for creating gizmos and widgets, for positioning and scaling
them, for attaching them to parameters, for reading and writing to them. An
example would be creating a slider and then getting values for an interactive
thresholding operations from it.

" Menus The IUE should provide simplified interactive access to menus in the
GUI kits. This involves being able to extend menus, create pop-up menus,
associate actions with menu items. A critical design task is deciding what goes
into system level menus and how they are organized

" Icons The IUE should provide simplified interactive access to icons in the GUI
kits. These may not be flexible enough for our needs. [Note: Icons in Khoros
representing processes can be connected together to form a graph for algorithm
creation and process monitoring. We may be able to obtain the same function-
ality by using a graph browser with icons at nodes.]

4.3.3 Support Objects

There are also several objects that are used and manipulated as part of the interface
that we will refer to:

* Display-Look-Up-Table: A generalization of a color look up table that de-
scribes how to map object values onto screen values. It can also include func-
tions.

40

* Object-Display-Mapping: A structure which describes the mapping from an
object onto a display. This includes both the position and values of how the
object is displayed and a reference to a particular Display Look Up Table.

* Object-Browsing-Mapping: A structure which describes the mapping from
an object or database onto a browser.

e Object Display Links: A structure which describes the concatenation of
a display or browsing operation between IUE interface objects. Thus a link
between display windows wl and w2 with an associated zoom and pan would
display an object in wl with wl's object display mapping and then display the
same object in w2 by concatenating onto the object display mapping for wl,
the specified zoom and pan operation.

e Interface layout: A structure which describes the object instances in a par-
ticular instantiation of the interface. Users may prefer different interfaces (ar-
rangement and instantiation of the basic IUEUI objects) depending on the task
or level of sophistication.

9 Display Context: A structure which describes current context for a display.
Such things as the current window, the current object, the current object dis-
play mapping, the current display command, the current mouse-selected object
position and value, and others. Display operations can use defaults based upon
these.

e Browse Context: A similar structure for browsing operations. Such things as
the current browser, the current data base, the query history, and others.

* Display Snapshot: What is produced when the current display is written to
a file. It is just what appears on the screen and not the actual objects.

* Animation File: A sequence of display snapshots.

4.3.4 Interface to Arbitrary Interface Devices

In the development here, we are assuming a very limited set of interface object: a
mouse and a keyboard. By the time the environment is commonly adopted, there
will be a much wider array of objects such as: voice input, gestural recognition (data
gloves), and perhaps virtual reality displays. What tools will we provide to interface
such devices with the IUE? At this point, we are raising this as an important design
issue. A rough cut was made at this earlier by suggesting objects

* Keyboard object

e Pointer object

41

9 Mouse object

e Trackball object

with methods such as Open-Device, Get-History, Close-Device, Attach, Get-Status,
Handle-Event. More extensive work will be needed in this area, perhaps requiring
special IUE interface buffers and IUE access to Graphics Level event handling rou-
tines.

4.3.5 Total Synergy between IUE object methods and the IUE Interface
Operations

Any of the operations that can be applied to objects as part of the IUE should
also be applicable to object prior to displaying or browsing them. In the examples
below, because the syntax for this is not specified, there will be some confusion. For
example, how do I refer to the registered curvature values associated with a curve
object if I want to display them? What is the query I use to find all curves greater
than some length prior to displaying them? Using the interface requires use of objects
and operations in the IUE, notably database operations and queries; referring to a
particular set of attributes of an object; selecting a portion of an object; applying a
transformation to object values; and operations for combining objects. Much of this
comes for free in LISP. It may require building a special parser for non-interactive
programming environments with an extensive library of functions. (Note: All IUE
objects will also require browse and display methods.)

4.4 Object Display

The object display is for mapping an IUE object onto a 2 dimensional view with
methods for controlling how this is done. It is a major object and is specialized
into some different types of displays which have different inherited methods from the
general display object. A display is also recursive in that it can consist of several
displays. Performing and interacting with an object display takes place in an object
display window. From the user point of view, an object display can be thought of as
a window with different component displays in it.

4.4.1 Appearance

The layout for the object display window is shown in Figure 4-3 . It is a rectangular
window with

* a title bar (which can be colored or patterned)

42

..

...%:'

* XV

Lo"~' -

J,4

Figure 4-3: Object Display Window.

43

e a close box for closing the window

* an iconization-box for turning the window into an icon and saving it s state

e horizontal and vertical scroll bars for panning

* a resize box for changing the size of the window

9 a status bar containing information about the current display object(s) and the
last selected object location and value

e a button bar for actions such as display of the current browse selected object.

A window can be selected by clicking anywhere on it with a mouse. It then becomes
bound to the variable named *current-window* for future displays and interactions.
Thereafter, when the user clicks in the display portion of the window, he executes
the interactive methods which defaults to displaying the current object location and
value (the user can associate arbitrary interactive methods with mouse actions). The
current window has a distinctive highlighting of the title bar as do any window to
which is is linked. As an option, the user can hide other windows except for the
current window and windows to which it is linked. The window can be repositioned
by clicking and dragging on the title bar.

There are two other associated windows for interacting with the display in the
current window:

* Interactive Command Buffer. This appears like a WYSIWYG text editor.
Textual outputs can also be written to the Interactive Command Buffer. It
has a vertical scroll bar for accessing previously written commands and allows
operations like cutting, pasting, etc. It is something like a limited Lisp Lis-
tener for interacting with objects and displaying them. A nice feature it should
incorporate is the use of shift-return in Mathematica: a command is only exe-
cuted when the user hits shift-return. This makes it possible to create complex
multi-line operations and also breaks the display command history into chunks
of related actions that a user may want to access for later editing. (Note: It
may be a Lisp Listener or something very similar if the development takes place
in an interactive programming environment.)

o Display Tool Box. There are many familiar interactive controls for displays
and visualization, such as interactively manipulating the object-value to screen-
intensity function by interactively shaping the function, selecting color look-up
tables, modifying color look-up tables, interactively building display commands
using templates or command browsers, floating tool palette of interactive draw-
ing tools, etc. The Display Tool Box is a menu of such tools, organized into
functional groupings of interactive tools for manipulating the current display.

44

From a functional point of view, it allows potentially redundant access to the
display methods without using the interactive command buffer. It is somewhat
like the system control menu on the Macintosh and the system preference menu
on the NeXT machine. In the Figure 4-4, the large buttons on the right are
some of the different modes of interaction. The interaction field on the left has
the corresponding interaction tools for a selected mode. The ones shown here
are existing ones on the NeXT for manipulating the color look-up table. The
order of the buttons in the tool box should be settable by the user. Users can
also select particular interaction tools and have them occur as floating palette
(in cases where the user want to interact with multiple tools from different sets
of tools at the same time).

(Note: We probably need a similar menu for setting up system defaults and
initializing characteristics of the IUE: initial layout, font selected, level of ex-
pertise, etc.)

Some of the tools sets that should be included in the tool box are-

* Interactive Selection and Modification of the the current color lookup table and
display mapping function; cycling through different color look up tables

* Interactive Selection and modification of a display's attributes using browsers
for the display window's attributes that can be used for changing attributes of
the window and display; Browsers over the windows that the window has links
with

* Interactive Display Command Creation such as Browsers for selecting existing
position and value functions to be placed into commands; available options for
the different display commands and their current defaults presented in template
form

e User-created gizmos/widgets: sliders, buttons, knobs that the user has created

e Gizmo/widget arrangements of which a user is particularly fond

* Interactive gizmo/widget creation using gizmo selection-wells

e Sending displays to a printer

* Animation creation and playback

Note: We can either associate the command buffer and tool box with each display
window or else have them automatically linked to the current window. The second
alternative is simpler, though it may have some context problems since displays will
always default to the current window. It may be best to default to one command
buffer and one tool box, but to have their context shifted in terms of setting to
different selected tools when different windows are selected.

.....

.. tC

06,

.. 4 ~ , ,L I i l

....... Mag..t.

.................~
..~~~-

Figre.-4.DislayToo..o

46

4.4.2 Attributes and Methods

Class-Name Object Display

Description An Object Display

Sources/existing implementations

Superior(s) IUE Interface Object

Component Class(s)

Associated Class(s)

Slots

Screen-Size: Size of window in screen coordinates. Returns a 2D integer
vector (maybe a specialized struct)

Screen-Position: Position of upper, left-hand position of a display window
in screen coordinates. A 2D integer vector (maybe a specialized struct)

Internal identifier: unique number associated with each display window

Name: Name of window: a string

Title-Bar-Color: Color of the title bar

Title-Bar-Font: Font Object

Cursor: Any of the set [cross-bar, cross-hairs, arrow, user-defined (Note:
These should be definable as IUE Objects: lines with constraints between
them mapped onto the overlay planes or bit-mask regions).

Children-Windows: A list of display-link objects describing displays which
are linked to this display

Parent-Window: The display to which the display is linked

Current Object Display Mapping: An object view mapping object de-
scribing the current mapping of an object onto the display. This includes
pixel scaling factors

Current Display Command: A set of strings for the current display com-
mand

Object-location-list: A list of locations selected by clicking the mouse on
the display: it inverts the specified object view mapping (the default is the
current one) to determine the location in the specified objects

Object-value-list: A list of values selected from an object using the object-
location-list

47

Window-location-list: A list of locations selected by clicking the mouse on
the display. The locations are in screen coordinates

Display History: A Database

Current Display Mapping Table: A display Mapping Table structure

Methods There are several methods for displays and they are organized into
different groups (A good way to see the effects of these methods is to look at
examples from the section on the command language):

Methods for Manipulating the Current Object display position
mapping: This includes operations such as panning, zooming, perspective
views, and warping. These are methods that control how positions in the
specified object(s) get mapped onto a display window.

Methods for Manipulating the Current Object value mapping: These
include operations such as overlays, mapping onto different color bands, trans-
parency, and others. These are methods that control how values in the spec-
ified object(s) get mapped onto screen attributes such as color and intensity.

Methods for setting the current display mapping table: These include
how to configure planes in the screen buffer for the display of color images;
how many panes to use for overlays; particular functions and conditions to
apply to object values prior to display.

Methods for Screen Attributes: These involve controlling attributes of
the window the display is mapped onto and includes such things as position,
size, attributes of the title bar, event handling for the mouse.

Methods for Links: Linking display transformations in different windows.
Operations include creating links and associating position and value map-
pings with the links.

Methods for Interaction: These involve interaction and manipulation of
displayed object(s) in the display. Operations include recovering object po-
sition and value from a mouse click, applying functions to selected objects,
applying functions using selected information.

Methods for History: Methods to coordinate displays overtime, such as
cycling through an image sequence, playing an animation of displays.

Methods for Graphics: These involve accessing display registered graphics
packages for drawing lines, text, and other things. These occurs in four
different modes: 1) relative to the window of the display; 2) relative to
the entire screen; 3) the specified object or coordinate system; or 4) for
instantiating IUE objects corresponding to the graphic displays.

Methods for printing and writing to file, animation: It should be
possible to send the view of any object to a hardcopy print device or to files
for later redisplay or printing.

48

Manipulating the Current Object Display Position Mapping

zoom (window-zoom)

Arglist x-zoom-factor y-zoom-factor

Return Type None

Description Specifies the scale of mapping from an object onto a window

Exceptions

pan (window-pan)

Arglist x-translation-factor y-translation-factor

Return Type None

Description Specifies the moving the position of a displayed object in a
window

Exceptions

Matrix

Arglist Homogeneous Viewing Matrix

Return Type

Description

Exceptions

Position-function

Arglist Code Chunk

Return Type None

Description A chunk of code which computes a position from positions
or values taken from the specified display objects. These are referred to
as dummy variable by placing ".value" or ".position" after the object name
(Note: what should be done if the values and positions are not just scalars?).
As the display processing iterates over the specified object, the code chunk is
applied to the specified values and positions prior to the display to generate
a new position. In Lisp, these can be expressed as functional closures and are
pretty easy to manipulate. In C, we may have to provide a compiled library
of code chunks that can be used in this way or with a parser.

Exceptions

Warp

Arglist

49

Return Type

Description

Exceptions

Manipulating the Current Object Display Value Mapping

linear-mapping (linear-map)

Arglist object-value-min object-value-max screen-value-min screen-value-
max

Return Type none

Description Will map the specified range of object values linearly onto
screen intensity values

Exceptions screen-value-min and screen-value-max will have default values

values

Arglist a method for extracting values from a spatial object

Return Type none

Description

Exceptions

value-function

Arglist A chunk of code which computes a value from values taken from the
specified display objects. These are referred to as dummy variable by placing
".value" after the object name. Essentially, as the display processing iterates
over the specified object, the code chunk is applied to the specified values
prior to the display. In Lisp, these can be expressed as functional closures
&nd are pretty easy to manipulate. In C, we may have to provide a compiled
library of code chunks that can be used in this way or with a parser.

Return Type none

Description see examples throughout this document

Exceptions

overlay-object

Arglist an object (this could be a virtual object)

Return Type

Description

Exceptions

50

Methods to set the Display Mapping Table

rgb-24, rgb-16, rgb-8

Arglist none

Return Type none

Description Specifies that the display of colors is mapped onto red green
blue values on the display

Exceptions There are going to be several variants of this depending on
how we want to specify allowable overlays values, deal with transparency.
We should copy something simple from graphics. The different components
can then be referred to as :red, :green, :blue.

overlay-color

Arglist Any from the enumerated set (red,green,blue,clear)
Return Type none

Description will perform the specified display in the overlay plane as a
solid color.

Exceptions Assumes the display value is binary; if not, 0 gets mapped onto
no display and other values get mapped onto display in the overlay color. The
different overlay colors can be referred to by name or an associated number.

yiq

Arglist

Return Type

Description

Exceptions

hsu

Arglist

Return Type

Description

Exceptions

CLUT

Arglist

Return Type

51

Description

Exceptions

Transparency

Arglist

Return Type

Description

Exceptions

Flash

Arglist

Return Type

Description

Exceptions

Methods for Links between displays

create-link (link)

Arglist Interface-object1 Interface-object2 display-mapping-object

Return Type

Description

Exceptions

set-link

Arglist Interface-objectl Interface-object2 display-mapping-object

Return Type

Description Sets (changes) the display-mapping-object associated with the
link between interface-objects

Exceptions

un-link

Arglist

Return Type

Description

Exceptions

52

Methods for Interaction

initial , always, continuous

Arglist Interface Command

Return Type

Description

Exceptions

interactive-function-selection

Arglist a set of Interface commands indexed by a number

Return Type

Description For an interactive function, programs are associated with dif-
ferent numbers. When a key is selected, the corresponding function is applied
to values in the different lists of values obtained by mouse clicking.

Exceptions

clear

Arglist none

Return Type

Description Clears the position and value lists (probably need other for
removing some number of items

Exceptions

4.4.3 Local Graphic Displays (vector, edges)

Local Graphic Displays are a subclass of object display, but instead of mapping
an object attribute onto a screen intensity or color, it will display a parameterized
graphic, such as a line, a square, a perspective view of a cube, or something from
a library of such displays or a user specified one. A common example is a vector
display which will map each component from a pair of images onto the x and y
components of a vector, usually displayed as an overlay on top of an image. Other
types of visualizations are possible. For visualizing three-dimensional attributes in
register across an image, the user can display little unit cubes with their orientation
computed from the specified components of display. The graphic display can be a
piece of graphics code which will be positioned to the projected location of the pixel.
For example:

53

[Eg x-component y-component :graphic-type xy-vector :overcolor-plane red]

or the command language could include equivalent expressions such as

[v x-component y-component :overcolor-plane red]

will take two images and use them to specify the respective (x,y) components of
vectors displayed in the red overlay plane at each point.

[ig x-component y-component
:graphic-type xy-vector
:x-increment 10
:y-increment 10
:value-function [+ x-component.value y-component.value]
:linear-mapping 0 20 *min* *max*]

This displays a vector at every 10th pixel with the intensity of the displayed vector
determined by summing the x and y components and then linearly mapping these
between 0 and 20. Note the use of methods from the general display class.

[ig x-component y-component gradient-magnitude
:graphic-type xy-vector
:x-increment 10
:y-increment 10
:scale .5
: value-function gradient-magnitude. value]

This displays the same vector field, but uses the third component to determine the
intensity of the displayed vector. The scale method is expressed in object coordinates
(accounting for the size of an object pixel relative to a screen pixel). There would
also be methods for displaying vectors specified in (r,theta). (Note: we could have a
method xy-vector-normalized.)

Edges are similar to vectors in drawing lines corresponding to the edges. Different
types of edge displays should be distinguished:

54

"* Mapping onto horizontal and vertical edges in the cracks between pixels

"* Placing a single edge at the center of a pixel with it s orientation determined
by the specified components objects

One way for displaying 3-dimensional surface orientation from images which contain
the orientation angles:

[p image]
Jig anglel-component angle2-component

:graphic-type unit-cube-perspective
:overlay-color red
:x-increment 10
:y-increment 10]

4.4.4 Surfaces

SRI for terrain views of surfaces

Modification of existing package

4.4.5 Coordinate Transform Network of Images

There are several objects and displays which involve sets of related images, such as
stereo pairs, motion sequences, pyramids, and mosaics. In some cases the relationship
between the images is expressed by an explicit coordinate transform between the
components of the object.

These displays can be handled in several ways:

• display each image in a different window and have them associated by links

e display each image in the same window but scale it to be appropriately registered
with a selected scale and cycle through the display history

e display each image in the same window but choose a single scale for all of them
and use general display mechanisms for indexing through all the displays.

.55

4.5 Plotting Displays

Much of the functionality for plotting displays is defined in existing packages such as
Mathematica. Mathematica has different types of plotting displays with "methods"
corresponding to keyword-based argument passing. It would be nice to be able to use
something like this.

There are some particular things that need to be addressed in using such a package
that may require recoding into our environment:

e It should be compatible with the general display methods for such things as
interacting with the plot display using a mouse; for the use of different colors;
for being able to display.

* It should be fast and not require time-consuming conversion between the data
formats of the plotting package and IUE objects.

Different types of displays include 1-dimensional plots, 2-dimensional plots, 3-dimen-
sional renderings, scatter grams, density plots, parametric plots and contour plots.

4.6 Field Browsers

Browsers are generally used for interacting with the textual, symbolic and relational
aspects of objects. Different browsers are used for different types of objects. There
is one type for browsing a set or database of objects (set/database browser). There
is another for inspecting attributes of a single object. There are two different types
for viewing networks and graphs (graph browser and hierarchical browser). There is
another type for inspecting spatial object which have coordinate systems or relations
between coordinate systems (object registered browser).

(Note: Should browse methods be specialized based upon the type of object be-
ing browsed? Or how objects get mapped onto a particular browser? One type of
interaction for dealing with lists, a structure, etc. How do we conform to the object
inspectors in the development environment?)

Browsers have many similarities with displays. They can be linked. They have
something like a value-function or display mapping object in that the characteristics
of the browsers field (such as the text size, font, background color, display of an icon)
are determined by the object being browsed.

(Note: How should links between display windows and browsers be handled?
When a display is updated: the browser can be updated: when the browser is changed
a value in the browser is changed, a display can be updated.)

Browsers are built from several component objects:

56

* A field appears as a rectangular box which has slots for

"o a background color

"o a text string

"o a text size, text font, text color

"o a type of boundary

"o a screen size and screen position

"o an icon

"o a field mapping object which describes how to map attributes of an object
to the different of the field. For example, in the object registered browser,
a field could contain a number colored as the intensity of the corresponding
location in an image. Or the background of the field could be colored at this
intensity and the text string shown in another color.

A field also has a field-selection-action that is performed when the field is se-
lected by a mouse-click. An action could be to bring up a browser on the object
in the field that was selected. When a field is selected, what happens is much
like when a mouse clicks a pixel in a display in the interactive mode. The
location and value are stored in a list for later use.

" Fields can be organized into connected horizontal or vertical field groups
where in each field as a unique index in the Field Group. The fields in field
groups will generally have different object mapping functions. An example
comes from the object-registered browser in which a given field group can corre-
spond to registered values from different objects. For better visualization, these
could be displayed in different colors, fonts, etc, in addition to their position in
the field group. A field group can also have a distinct boundary.

" Field Groups can be organized into field matrices where in each group as a
unique index set in the field matrix. This is used for mapping objects onto the
matrix. Unless otherwise specified, the component fields of a Field Matrix will
inherit the field attributes of the Field Matrix. There are constraints on the
allowable sizes and positions of component fields.

" Field Matrices can be scrollable as a way to control the mapping of an object
(or object set) onto the Field Matrix.

4.7 Object-Registered Browser

The object-registered browser is used to inspect the values in a neighborhood of a
spatial object. A common example is inspecting the image values about a selected

57

point. It is very much like the display of a spatial object in a display window, but
instead of the values being mapped onto window positions and screen intensities and
colors, things are usually mapped onto field locations and text. It is also possible to
map onto general field values such as colored text, changes in font, colors, and icons.

The layout of an object-registered browser as it would appear for an image sequence
is shown in Figure 4-5 . The fields display the specified values in a particular frame
centered on the specified frame number and (x,y) position. In the actual display, the
field which corresponds to the location of the array browser is shaded or highlighted.
Spatial Directions are appropriately registered: up in the image means up in the array
browser. The Object to Field Mapping Object specifies for a particular object what
type of field mapping is used for it s specified attributes or values. This can be a user-
specified function or from a library of existing functions. Users can select the type of
font, text size, color, icons, that they want values in an object mapped onto.

For using the browsing an image and a segmentation:

[browse-obj ect-registered
image label-plane
:field-action [browse *b3* [get-value label-plane

object-location. x
object-location. y]]

This indicates the importance of being able to access the object values and locations
from the selected browser fields and the use of a object browser mapping object. This
is very much like what occurs with mouse clicking in a display window for a displayed
object: the values go into the object-value-list and the corresponding object locations
into an object-location-list.

(Note: How would we l.!rform array browsing on a pyramid? What is the local
neighborhood? At given point, display the values in the children level. Assume
there is an explicit coordinate transform between the different levels. The dimension
button could then correspond to the things at different levels. What if the relation
is a sequential one over time local neighborhood structure? Objects are related by
some coordinate transform between the levels.)

(Note: How would we use a region to define the shape of the neighborhood? Use
an object to perform a composition operation with another object? Use a curve to
pull values out of an image? Use a containing volume, minimum bounding rectangle,
minimum bounding cube and do regular array browse with respect to that?)

53

V~. ..*.

~ to ne lý tf . .*

Objec~t FieldMap -

Text Tex Ii~ Text Tex

Text~ 1................ Tex Tex.....Text....Text..

Tet 1 etTx etText Text

Text~ [Text Tx Tx etTx

[Te TxtTex t e t [Text Text Tx

...... Figure ..3 Object-Reg..stered.Browser.

.59

4.8 Database/Set Browser

An example Database/Set Browser is shown in Figure 4-6. It consists of three
basic parts: a field of button for interactively building queries, selecting objects, and
applying operations. A text input field for typing in pieces of text to be used in
queries. A field matrix in which rows will correspond to an object and columns to
attributes the objects have in common.

For example, suppose I wanted to find a result that I generated but couldn't recall.
In general, it would be a good idea to keep a browser over the set of active objects
(let's call this the environmental Data Base - EDB). I would set this up with the
command:

[create-db-browser EDB :attribute-fields name time-of-creation from-function]

Sometime into my work, I want to find a flow-field that was the result of an amazing-
function. I would type in the text area "amazing-function" [Note: for text-matching,
substring matching could be used], click it, click =, click the column attribute field
labeled "from-function", click UPDATE. Then the browser would list all the objects
which had been created from the function amazing function. To find the most recent, I
would click the attribute-field labeled "time-of-creation" and then click GREATER-
THAN, SORT, UPDATE, and the topmost field would contain the most recently
created object from this routine. This is also bound to the variable *current-object'
and would be displayed as a default.

(Note: Perhaps, as a query is being created interactively, it should be displayed in
an interactive command buffer. If so, how should this relate to the text input field
in the browser?)

For each query, a set of selected objects is found. This set can be used for further
queries. Sometime people make mistakes or want to return to a previously determined
set. The LAST button is for this. We could save the current sequence of sets and
continually back up through them by repeatedly clicking the LAST button (Note:
This may be too costly).

It is also possible to associate with the text field selection action, the operation to
browse the selected object in a separate object browser.

[browse EDB :selection-action [browse *bl* *selected-item*])

60

MAX............

X4,

Text j~et...... j~x

..ex ... x - .---

Textd~e Tet.~......

TeýText Text

..
.....................I~ e x

.... ~Fi ur 4-6 Se / at b s Browser..........I.................

61

4.9 Object Browser

The object browser is a simplified version of the Database/Set Browser with out
mechanisms for interactive queries. It is used for inspecting the attributes of a single
object. One column is used for the names of attributes and the other column is used
for their values.

4.10 Hierarchical Browser

The hierarchical browser is used for the inspection of graphical and network objects.
Each column corresponds to a set of objects. When an object is selected, the types of
relations (arcs) associated with the object are displayed in the Current Arc Browser.
For a selected type of relation (arc), the related objects are then displayed in the next
right column. This can then be repeated any number of times. It may be useful to
have a field selection method to browse the currently selected object.

4.11 Graph Browsers

We need to define how to display IUE constraint networks. This includes: being
able to zoom these in something like a display window, coloring the nodes based upon
their attributes, and mapping them through a pixel mapping function.

Graph browsing a relational object or a graph will be set up using operations such
as add-node, link-nodes, remove-nodes, add-arc, remove-arc, and interactive creation.

4.12 GUI Object Access

We need a general create-gizmo command.

It would be nice if the SRI model for menu definition for the environment could be
set up in a browser and modified interactively.

4.13 Associated Objects

link-transformation object
parent display
child display
Object
Object-View mapping to be concatenated

62

Text Text

[Text Tx
.... ~-*............ ..*.*....... .

.0:......... c

Text

1........ __

Text Text

Text
.....ext

jText
~O0..................M9

Text
Figure 4-. Obec Browser...............

63

. ~ r

P~e~ Map~> ~ Text

/2~.c.. o O ~ s* t) ~ l

Text TetetTx
....... x....................,:c M X .:X ..<.:.. M...... ... Y...c

Tet ex Tx

Textx TextTex
........ ...

Text TetTx
.. :.:.....:..:..:..,..:..

TextTextxtex

Tex Tex
x

....

S Text...Text.Tex

..

Fiur.48:Hirachca.Bowe

64

H T ~ Text

Text Text/ ex
M I

1 Text
................................t

07.TxtT.t ~ Text

-0

Al
...... T x

Fiur 4-AGah rwe

65

Display Command Buffer Associated with window

Objects displayed in window

Obj ect-View-Mapping
Object
Position Mapping
Value Mapping Table
Value Mapping Procedure

4.14 Interface Context

There are several values which are used to describe the current state of the interface.

9 list of windows

* list of browsers

* links between windows and browsers

* current window

* current browser

* current display mapping

"* current display mapping table

"* the current object resulting from a browse or display action.

4.15 Interface Command Language

Messages can be sent to displays interactively through the command buffer.

All of the functionality of the interface is accessible through an interactive command
language. The interface command language describes the overall functionality of the
interface. All the interactive commands can also be placed in code for developing
reusable scripts. The Command language supports defaults during interaction for
conciseness and brevity.

66

4.15.1 Command Syntax

This is an initial stick in the ground. It comes from the display commands used in
KBVision and PowerVision. The general syntax is

Display-action Window-Identifier object-set [keyword-arguments]*
Snapshot File

Browse-action Browser-Identifier object-set [keyword-arguments]*

4.15.2 Window Creation

* Screen Size

e Screen Position

There are defaults maintained in global parameters describing the environment that
are used if these are not specified. These can be changed from grabbing a window
and resizing it in a manner consistent with the GUI package that is used.

Ccw 1 :size 512 512 :position 100 100)

If a display operation is performed with no existing window, one is automatically
created. Otherwise the *Current-Window* is used.

4.15.3 Browser Creation

4.15.4 Animation Commands

4.15.5 Window Linking

Display Windows can be Linked. A link between windows specifies a concatenation
of functions to be applied to the domain and the range of the spatial object for
mapping onto a display window. An example is using the display in one window to
zoom onto a selected area in another window. In this case, the mapping from the
domain of the object onto window 1 is concatenated with the mapping from the object
onto window 2. Whenever a display mapping occurs in a window all of the associated
linked windows are updates. For simplicity, displays are only updated when a display
action is performed, not when changes are made to the spatial object. Cycles in
window links are not allowed and therefore should be discouraged.

'See Section 4.15.9 on page 71 for a list of Interface Command Language Abbreviations

67

The basic commands for links are:

[create-link wl w
{followed by any of the keywords used to specify viewing an object}]

[unlink w1 w2]

[set-link wl w2
{followed by any of the keywordsused to specify viewing an object}]

For example,

[create-link wl w2 :zoom 2 2 :pan 100 100]

creates a link between window wl and w2 such that whatever is displayed in wl
will appear in w2, zoomed by a factor 2 and panned by (100,100).

[cw :rgb-24]
> *W1*

[cw :copy-attributes *Wl*]
> *W2*
[cw :copy-attributes *W1*J
> *W3*

[cw :copy-attributes *Wi*]
> *W4*

[link wi w2 :value red-component :red-8]
[link wi w3 :value green-component :green-8]
[link wi w4 :value blue-component :blue-8]
[p *Wi* color-image]

Will display the different components of a color image in the three different windows.

(Note: Can windows can be linked to themselves (as in zooming into the same
window)?)

Set-link changes the specified transformation between as also does a redisplay
in the child window. For example,

68

[create-link wl w2 :zoom 1 1)

[create-gizmo :type slider :range -5 5 :name zoom-slider
:action [set-link wl w2 :zoom zoom-slider.value zoom-slider.value]]

creates a link between two windows and a slider gizmo. When the slider gizmo is
changed, it specifies how much zooming should occur and a redisplay occurs in w2
(the mapping from the spatial object onto wl is not changed).

(Note: in interactive versions for zooming and panning should the selection square
be an object, like a cursor?)

4.15.6 Object Position Mapping Keywords

0 zoom

9 pan

e affine mapping

* viewing coordinate transforms

* matrix

* position-function

4.15.7 Graphics

Often times the user will want to perform common graphical display for things such
as text, simple two-dimensional graphics, more complicated three-dimensional graph-
ics. Examples are annotating a display, indicating where some action is occurring (the
position of an epipolar line, translational flow paths, etc.), projecting a wireframe of
a model onto an image.

This functionality can be found in several existing graphics packages and it would
be best if we could just link to such a package. An alternative is to come up with
thousands of commands like

[draw-line 100 100 200 200 :color blue :thickness 3]
[draw-circle]

69

for circles, disks, text, and so forth, which will be specific to the IUE. This may
be required if such graphics packages are not accessible in an interactive form for our
interface.

It is important to distinguish three different modes in which graphic displays can
take place:

* they can occur in the coordinate system of the display window. In this case
displays only occur with respect to the window coordinate system.

* they can occur in the coordinate system of the displayed object. In this case I
would be drawing a line with respect to the inverse mapping from window to
object coordinates.

* when the display is performed with respect to the coordinate system of an
object, it can actually generate an instance of an IUE object. Thus, in drawing
a line in object coordinates, an instance of an IUE line object would actually
be produced. When the wireframe model is displayed, each line-segment and
junction will be created as an object in the IUE. For composite objects this may
require significant processing. It is straight forward for simple objects such as
polygons, curves, and so forth. This is very useful for producing data for testing
routines. This mode can be coupled with the interactive processing mode to
allow for the interaction creation of data.

These different modes could be specified by a global mode or as keywords in the
commands.

4.15.8 Object Value Mapping Keywords

These are for specifying commonly used transformation from an object value onto
a screen intensity or color:

e overlay-color. Can take values such as red, blue, green, clear (clear the overlay
plane), cycle (cycle through a set of specified overlay colors so that features
displayed at different times get different colors: will select the next available
overlay color),user defined colors. If no value is specified, it means the display
will take place in the overlay plane either using a default or as specified by a
value-function. The overlay plane can be thought of as a glass sheet on which
the user can write annotations and display extracted features and values. For a
displayed image, the overlay will occur in register with the display window. For
a displayed surface or volume, the overlay can occur with respect to the display
window OR with respect to the surface or volume (Note: We need a way of
specifying this).

70

* value-function: User can specify an arbitrary function which takes in an object

value and returns a value to be displayed in a display window in terms of
intensity or color. This is a little chunk of code that the display process uses

when it decides how to color a value from the object. For example,

[:overlay-color (red, green, blue, violet)]

[p image :value-function [if (image.value > 10) red blue]]

The first command tells the current display to change the display mapping table
to use the specified overlay colors (in the display toolbox there will certainly be

an interactive color editor for selecting and creating overlay colors). The second
will display red in the overlay plane at a screen pixel corresponding to an image
pixel if the image value is greater than 10, otherwise it will display blue.

[p label-image :value-function [if (label-image.value = NULL)
0

(length label-image. value)]
:linear 0 20 0 *screen-max*]

This function displays a label image (an image where each pixel contains a list

of all the objects which occupy that pixel). The value function determines the

number of objects in this list and the linear function maps this onto available
screen intensities. The object value mappings are applied in the order of the

keywords.

e overlay-object the object which will be overlaid. This is generally used when

one object determined where something will be displayed and another deter-
mines what color it should be. For example, suppose I have a binary edge
image that I want to overlay on top of an color image:

[p image]
[p edge-image :overlay-color red]

this could be specified as:

71

[p image :overlay-object edge-image :overlay-color red]

A typical use of this is for displaying extracted features with respect to a surface.
Suppose I have a surface display of the intensity values in an image and I want
to display the locations of an extracted edge-image on top of this:

[s image :overlay-object edge-image :overlay-color red]

" CLUT: User specifies a color look up table to map display object values through.
This can be an array of numbers or an array of functions (pointers to functions).

" transparency operators: (Note: Consider implementations on NeXT and Sili-
con Graphics)

" linear: User specifies a range of values in the object and the range of screen
value that they will be mapped on to define a linear function.

[p image :linear 0.0 256.0 screen-min screen-max]

would display image in the current window and linearly map object values from
0 to 256 onto the range specified by the system globals screen-min and screen-
max (these would probably be defaults)

[p image :linear 0.0 256.0 CLUT[l] CLUT[2]]

map between values found in the specified color look-up table

4.15.9 Interface Command Language Abbreviations

p for pixel

i for interactive

v for vector

b for browse

cw for create window

cb for create browser

g for graphics

s for surface

72

4.15.10 Interface Context and Intelligent Defaulting

4.15.11 Organization of System Menus

4.16 Implementation of Nice Features/Examples

This section shows how nice features found in other IUE system will be imple-
mented in the IUEUI by using its basic objects. It also presents examples for
typical or interesting interface operations.

4.16.1 Displaying an Image

The simplest way of doing this is to hit the display button on a display window
or to type the command

[p]

and the *current object* will be displayed in the *current window* using the
current object display mapping and the links to other windows and browsers

associated with the *current window*.

A different current window can be selected by clicking anywhere on a window.
The *current object* can be selected interactively from a browser. For example
the command

[browse Objects-from-session. September20]

would either create or use the *Current-Browser* on all the objects saved in a
database from a session on September20. The user would then use the command
buttons associated with the browser to select an object as the *current object*
and then type

[p]

The selected object will be displayed using a default *object display-mapping*.
If no window exists, one will automatically be created based upon the object
and system defaults.

The user can play with the *object display mapping* using keywords. For
example,

[p :CLUT clut5l]

73

!..............~i:!i:!!•i:!-•,:iii!::i
00:,:": : •...i••::: -. 2 • .':'-:•

mem

Figure............m.M enu...you

74

would display using the current defaults while the user supplies the color look-up
table to map from object values to screen values.

[p :linear 0 128 *screen-min* *screen-max*]

would display using the current defaults while the range of object values from 0
to 128 are linearly mapped onto the range of values *screen-min* and *screen-
max* (these could be defaults).

Additionally the user could type

[create-gizmo :type slider
:name slick
:min 0 :max 256
: action

[p image :linear 0 [read slick] *screen-min* *screen-max*]]

4.16.2 Interactive Function Application

The interactive display allows a user to access the currently displayed object
or a list of specified objects through a display window using a mouse, pointing
device or other interactive device (space ball, data glove). We begin with the
simple form of this where we assume the user has a mouse and a keyboard.
The command [This may belong as a menu-level command or a default when
clicking in the window]

[i)

places the user in interactive mode with respect the *current window* and the
current object. Thereafter, when the user clicks in locations in the window, he

is returned the corresponding locations and values in the displayed spatial
object. These values can be displayed in the Command Interface or in the small
text field associated with the current window. What is actually happening each
time a click occurs in the window is that the queues for *object-positions*,
object-values, *window-positions*, *window-values* are being filled with the
selected values.

75

[i imagel image2 image3]

will do this for all the specified images simultaneously and store lists of values
in the queues. To exit interactive mode, the user will hit some specified mouse
button or keyboard key. (Note: What about viewing objects such as closed
surfaces which may be two-sided? We assume that the IUE will provide basic
operation for intersecting a ray of projection with a set of specified objects with
respect to a coordinate system. This operation could be invoked from the values
returned by the i command. In general, all the geometric operations should be
general ones to the IUE which can be invoked through the interface.)

The user can also call functions in the interactive mode to be applied to the
values in the different queues. For example:

[i image :1 [p :overlay-plane clear]
[p image :value-function '(if (image.value > *object-value*[1])

red blue)]

Whenever the user hits the terminal key 1, the overlay plane will be cleared
and all image locations with a value greater than the value at the selected
image location will be displayed in red, otherwise blue, in the overlay planes.
image.value is a dummy variable that refers to the current value in image which
is being displayed. *object-.value *[1] refers to the value selected using a mouse
click in the display window, red blue refers to globally defined overlay colors.
Recall that the :value function specifies the operation to be applied to an object
value to map it onto a screen intensity or color(Note: should there be a default
for transparency operations?). Values in image are returned whenever the user
clicks the mouse.

Another example:

[p *Wl* imagel]

[cw :copy-attributes *W2*]
[p *W2* image2]
[i *WI* imagel :1 [g *W2* :draw-line

W .min-x

object location[1] .y
W2 .max-x
object-location[1] .y]]

76

The user displays imagel in *W1*. He then creates another window which
is identical to *W2* and interactively moves it to another screen position. He
displays image2 in this new window using the *current-object-.display-.mapping *.
Thereafter, when he interactively selects a point in imagel, the corresponding
epipolar line (no rotation, only translation in X) is displayed with respect to
image2.

Let's say the user has a label image containing a set of extracted image features
and he want to inspect these in detail.

[cw :size 512 512 :name zoomie]
> *W1*
[cw :size 128 128 :name zoomer]
> *W2*
[create-link *Wl* *W2* :transformation-link :zoom 5 5 :pan 0 0]
[cb :type object :field-number 5]
[p *WI* image]
[p curveDB :positions curveDB.locations :overlay red]

[i label-image :always [browse *object-value*]
[set-link *W1* *W2* :pan *object-position*[1].x

object-position [I] .yJ]

Here the user creates two windows and displays the image and the extracted
database of curves in one of them. This is then displayed in *W2* under the
specified transformation. The user creates an object browser. When the user
clicks in *W1* with respect to the label plane, the curve object at that location
is returned as the *object-value*. This is then browsed in the current browser
and the area surrounding this curve is displayed in *W2* to get a close-up on
the curve and the underlying image.

[i image
:initial [message "select endpoints and press 1"]
:1 line-mask = [make-instance

:object line
:domain-increment 1
:interpolation nearest-neighbor
:ptl *object-position* [2]
:pt2 *object-position* [1]

[p :overlay clear]

77

[p line-mask :positions line-mask.locations :overlay-plane red]
[plotid *W2* :y-values [object-compose line-mask.positions image]]

Here the user is interactively creating a line-mask with mouse action, display-
ing the line-mask with respect to the image, and then plotting the image values
found along the line-mask in as a ld plot. Many things in this example are oper-
ations in the IUE that are still being specified. line-mask = [make-instance
:object line creates an instance of a line object with integer indices that
are mapped onto the image coordinates between ptl and pt2 using nearest-
neighbor interpolation. Such a functionality will exist in the IUE. There is also
the issue of how we handle local variables (such as line- mask) in the IUEUI
command buffer. Once the line-mask is created, it is displayed in the overlay
plane. Finally, the composition of the positions in the line line-mask with the
image (basically composing the functions line-mask: integers -/ > 2D Image
Coordinates and image: 2D Image Coordinates - > scalar values) are plotted.

4.16.3 Displaying a set of Region Boundaries and Junctions

The user would type

[p image]

to display the image from which the features were extracted. RegionDB and
JunctionDB refer to a database of extracted regions and junctions. To display
these the user could type

[p RegionDB.locations :overlay cycle]
[p JunctionDB.locations :overlay green]

This would display the regions by cycling through the different defined overlay
colors and then displaying the junctions in the green overlay plane. There
are problems with this: adjacent regions may have the same overlay color and
green junctions may be overlaid on top of green regions. The adjacent region
problem could require a region coloring option (or the user could display the
region contours in an overlay plane). The other problem could be solved by
using compositing options such as exclusive-oring or by commands such as

78

[p RegionDB.locations :overlay cycle (red,blue,yellow,pink,orange)]
[p JunctionDB.locations :overlay green]

where the set of overlay values to cycle through is explicitly listed (and doesn't
include green). (Note: Another possibility is to animate the overlays so they
flash using double buffering animation).

RegionDB.locations reflects some general issue with how to refer to IUE objects
and their attributes during display operations. First, we are referring not to a
single object but to a set of objects that we want displayed. The display method
will have to iterate over the elements of this set applying the appropriate display

method to each. Second, regions and junctions have several attributes and we
need to be clear about exactly what we want displayed from them. Here we
are referring to the locations in image coordinates that are occupied by these

objects. Let's say we wanted to color the regions based upon some attribute
such as the value of some associated texture measure (what will these references
look like in the IUE?). We suggest something like

[p RegionDB :positions RegionDB.locations :values
RegionDB. texture-measure

:linear 0 100 *min* *max* :red-8]

This says to display the RegionDB with the positions coming from the locations
attribute of the regions in the regionsDB and the values by taking the Region DB
texture mappings and using a linear mapping from these onto screen intensities

in 8 bits of red.

or

[p RegionDB :positions locations :values texture-measure
:linear-mapping 0 100 *min* *max* :red-8]

Where it is locations and texture-measure are defined attributes of region ob-
jects in the regionDB.

79

4.16.4 Display of a Vector Field

[p image]
[v image.gradient :x-inc 5 :y-inc 5 :length-scale 5]

each component is being used to specify the components of the displayed vector.

This should be a general operation where the components are used to describe
the display of an arbitrary graphical object, such as a perspective display of a
cube to provide information about orientation

4.16.5 Window to window Zooming and Panning

Creation of windows and browsers and creating links between these is a basic
processing mode and can be performed through system menus. The user would
select create-window from the system menu and create two windows by clicking
and dragging the mouse to size the windows and would then position the win-
dows by dragging the menu-bars. He could select [either off a menu or from
a button in the title bar of the window] the interactive window tools/inspector
to set attributes such as name, title bar color.He would then select link-windows
from the system menu. The order in which he then clicks on the windows cre-
ates a link between them. A browser of transformation between windows comes
up that he can select from. He would select zoom and pan and specify it using
a dynamic selection rectangle. Thereafter, whenever a display occurs in win-
dow *Wl* the same display occurs in window *W2* with the transformation
specified by the link.

Alternatively, this could all be done through interface commands:

[cw :screen-position 100 100 :screen-size 256 256 :name "big" :bar-color red--
> *W1*
[cw :screen-position 100 300 :screen-size 256 256 :name "zoomer"]
> *W2*

Clink *Wl* *W2* :zoom 2 2 :pan 100 100]

[i :1 (set-link *WI* *W2* :zoom {add (1 1) to current zoom value}]
:2 [set-link *WI* *W2* :zoom {subtract (1 1) to current zoom value}J
:3 [set-link *WI* *W2* :pan object.location[l].x object.location[1].y]]

4.16.6 Browsing a selected Image Area

The simplest way to do this would be to type

80

[array-browse]

and an array browser will be set up on the *current object* at a default location
and neighborhood size (probably the center and 10) using the *current object
browse mapping* [what type of font is used, etc.] The dimension of the array
is based upon the dimension of the object. The user could use the command
buttons on the array browser to move the inspection point through the object
(ID or 2D arrow pairs plus another for selecting dimension-the default setting
would come from the browse method associated with the object to be browsed).
Or the user could type

[array-browse object]

if the user types

[array-browse objecti object2 ...]

the fields in the array browsers will display registered values from all the speci-
fied objects. If the user types

[array-browse objectl [Functionl objectl] [Function2 objectl]]

the fields in the array browsers will display registered values from objectl and
the application of Functions 1 and 2 to object 1. If I have two different routines
for computing curvature along a curve and I want to inspect them, I could type

[array-browse curve [curvaturel curve] [curvature2 curve]]

An alternative is to run the array browser on mouse selected locations. This
may be a default action relative to the current window or the user may type

[i :continuous [array-browse

:location *current- object .x* *current-object.y*]]

and the browser will display values in a neighborhood surrounding the cur-
rent object position selected by the mouse. The neighborhood will be updated
continuously as the mouse is moved.

Setting up links between array browsers: the links have associated processing
actions to see the effect of a routine over a selected neighborhood.

81

4.16.7 Displaying a Color Image

[p color-image :color rgb-8]

displays the color image in with 8 bits in red, green and blue.

[p imagel image2 image3 :color rgb-8]

treats the three images as specifying the rgb components

4.16.8 Multiple Image Display

[p imagel image2 :values [- imagel.val image2.val]
:linear-range -20 20 *min* *max*]

4.16.9 Interactive Inspection of Image Registered Features

This involves how spatial queries are performed in the IUE. One way involves
the use of a label image. This is essentially a depth buffer which stores a
list of objects which occupy a given pixel (the list could be ordered by depth
or time of extraction of feature). This can be treated as an image and all the
operations that can be applied to an image can be applied to it. Such as

[p label-image :values [if (label-image.value /= NULL)
[i label-image :1 [browse label-image.value]]

4.16.10 Finding a particular result and Displaying it

The user would browse a particular database by typing

[browse long-term-data-base
:attributes (time-of-creation,function,type)]

and a browser would come up with respect to the objects in the long-term data
base listed row by row with the attributes time-of-creation, function, type in
the columns. The user would click the column head type and then = and
then type in "image" and the browser would then display all the objects of
type "image". The user would tuen click the column head function and the
= and then type in "Gaussian" and the browser would then display all the
images created by the Gaussian Routine. The user would then click the column

82

head Time-of-creation and then Sort Max and the browser displays the selected
images ordered by their time of creation. By clicking to the side of the first
listed image, it then becomes the *current-object* and can be displayed either
by clicking the display button in the browser or by typing

[p1

Suppose the user had a database of regions and wanted to find the largest. He
would type

[browse RegionDB :attributes area]

4.16.11 Animation of Surface Display of a moving edge

Here we are trying to understand the nature of an edge in a sequence of images.

To do this, we display the intensity in a selected image area as a surface plot and
then display, as an overlay, on top of the surface plot, the extracted edges. This
is done using a sequence of images and extracted edge-images (binary images
where 1 indicates the presence of an edge and 0 the absence) and writing the
display out to an animation file and then playing it back in a window.

To do this, the user would type:

{iterate image over image-sequence and
edge-image over edge-image-sequence

[s animation-file image :image-position 200 200
:distance 100

:Thetal 20
:Theta2 3

:overlay-object edge-image -overlay-plane red :clear t]}

[play animation-file]

Several things are occurring here. The first two lines correspond to the set iter-

ation control structures provided in the base programming language. We don't
want to build a complete programming language into the interface command

language so it's not clear if this is interactive. These lines cause the variables
image and edge-image to iterate over the respective sets. The next line says

to do a surface display to an animation file. Instead of displaying in a window

83

directly, the display will be written out to a file for play back. If a window
were specified instead, the display would occur in a window (although this may
not play at an effective speed for an animation). The surface display selects
an image point location which will be viewed, viewing distance from this point
and the angles of view. It also states that any previous display actions will be
cleared (it's a new frame) and that the edge-image is displayed in red values at
locations it occupies on top of the intensity surface.

The play command will play the animation back in the current window. There
are keywords associated with the play command for controlling the speed of the
animation. In fact, these parameters could be linked to a slider for interactive
control.

Animations can be made on the fly. A user can always specify this by indicating
an animation file instead of a display window in a display command. Another
command is

[snapshot window animation-file]

which will store whatever the state of the display in the specified window is out
to an animation file.

4.16.12 Interactive Surface Display

Here the user specifies a location in an image in one window and in another
window, a surface plot around this location is displayed. The user would type:

[p wi image]
[i wl :1 [s w2 image :location image.x image.y

:distance 200
:thetal 30
:theta2
:clear t]]

another possibility would be

[create-gizmo :type slider :range 0 1000 :name distance]
[create-gizmo :type slider :range 0 180 :name thetal]
[create-gizmo :type slider :range 0 180 :name theta2]
[p wi image]
[i wl :1 Es w2 image :location image.x image.y

84

:distance slider.distance
:thetal slider.thetal
:theta2 slider.theta2
:clear t]]

another possibility would be to allow variables that could be set by expressions
in the interface.

4.16.13 Process Monitoring

This is essentially a Set/DataBase Browser on a database of task objects. To
be KBV-ish, one of the field column should be mapped onto red or green. Tasks
would change the colors in their corresponding fields based upon their status.

4.16.14 Constraint Network Monitoring

This section needs to be created in coordination with the design of the LUE
constraint networks.

4.16.15 Interactive Histogram Segmentation

Clicking on (or near the axis of a plotted function) returns the x coordinate and
the y-value of the displayed object.

[plot2d *Wl* histogram]
[p *W2* image]
[i *W1* histogram :1 [min = current-value[1].x]

[max = current-value [2] . xl
[p *W2* image

:value-function
[if ((image.value > min) & (image.value < max)) blue]]]

Here the user has plotted a histogram in *Wl*. He then selects the range of
values by clicking on the displayed histogram. The current-object-value contains
the x and y value from the displayed histogram. These are stored in the local
values min and max (this isn't necessary: in general how will we refer to local
variables in these expressions? Will there be a set of dummy variables?).When
the user hits the key 2, the selected range of values are displayed in the blue
overlay plane.

Section 5

Summary

The IUE will be a revolutionary system covering many technologies, serving many
levels of users, and growing by distributed development over many years. The class
hierarchy framework and user interface concepts presented in this document will allow:

"* Integration of the diverse concepts of IU within one environment.

"* Rapid introduction of new users to the IUE.

"* Organized extension of the base IUE by developers (including new users).

85

